
U
N I

V E R S IT A
S

S
A

R A V I E N

S I
S

Saarland University

Faculty of Natural Sciences and Technology I

Department of Computer Science

Diplomarbeit

Very large language models
for machine translation

vorgelegt von

Christian Federmann

am 31.07.2007

angefertigt unter der Leitung von
Prof. Dr. Hans Uszkoreit, Saarland University/DFKI GmbH

betreut von
Dr. Andreas Eisele, Saarland University/DFKI GmbH

begutachtet von
Prof. Dr. Hans Uszkoreit, Saarland University/DFKI GmbH

Prof. Dr. Reinhard Wilhelm, Saarland University

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und alle verwendeten
Quellen angegeben habe.

Saarbrücken, den 31. Juli 2007

Christian Federmann

Einverständniserklärung

Hiermit erkläre ich mich damit einverstanden, dass meine Arbeit in den Bestand der Biblio-
thek der Fachrichtung Informatik aufgenommen wird.

Saarbrücken, den 31. Juli 2007

Christian Federmann

i

ii

Abstract

Current state-of-the-art statistical machine translation relies on statistical language models
which are based on n-grams and model language data using a Markov approach. The quality
of the n-gram models depends on the n-gram order which is chosen when the model is trained.
As machine translation is of increasing importance we have investigated extensions to improve
language model quality.

This thesis will present a new type of language model which allows the integration of very large
language models into the Moses MT framework. This approach creates an index from the
complete n-gram data of a given language model and loads only this index data into memory.
Actual n-gram data is retrieved dynamically from hard disk. The amount of memory that is
required to store such an indexed language model can be controlled by the indexing parameters
that are chosen to create the index data.

Further work done for this thesis included the creation of a standalone language model server.
The current implementation of the Moses decoder is not able to keep language model data
available in memory, instead it is forced to re-load this data each time the decoder application
is started. Our new language model server moves language model handling into a dedicated
process. This approach allows us to load n-gram data from a network or internet server
and can also be used to export language model data to other applications using a simple
communication protocol.

We conclude the thesis work by creating a very large language model out of the n-gram data
contained within the Google 5-gram corpus released in 2006. Current limitations within the
Moses MT framework hindered our evaluation efforts, hence no conclusive results can be
reported. Instead further work and improvements to the Moses decoder have been identi-
fied to be required before the full potential of very large language models can be efficiently
exploited.

iii

Zusammenfassung

Der momentane Stand der Technik im Bereich der statistischen Maschinenübersetzung stützt
sich unter anderem auf die Verwendung von statistischen Sprachmodellen. Diese basieren auf
N-grammen und modellieren Sprachdaten mittels eines Markow Modells. Die Qualität eines
solchen N-gram Modells hängt von der verwendeten Ordnung des Modells ab, die beim Train-
ing des Sprachmodells gewählt wurde. Da Maschinenübersetzung von wachsender Bedeutung
ist, haben wir verschiedene Möglichkeiten zur Verbesserung der Qualität von statistischen
Sprachmodellen untersucht.

Diese Diplomarbeit stellt eine neue Art von Sprachmodell vor, die es uns erlaubt, sehr große
Sprachmodelle in das Moses MT Framework zu integrieren. Unser Ansatz erstellt zuerst einen
Index der N-gram Daten eines gegebenen Sprachmodelles und lädt später nur diese Indexdaten
in den Speicher. Die tatsächlichen N-gram Daten werden zur Laufzeit des Decoders dynamisch
von der Festplatte in den Speicher geladen. Hierbei kann die Größe des Speichers, der für die
Verwendung eines solchen indizierten Sprachmodells benötigt wird, gezielt durch entsprechend
gewählte Indizierungsparameter kontrolliert werden.

Neben dem indizierten Sprachmodell beinhaltete diese Diplomarbeit ebenso die Erstellung
eines unabhängigen Sprachmodellservers. Die gegenwärtige Implementierung des Moses De-
coders ist nicht dazu in der Lage, die N-gram Daten eines Sprachmodells im Speicher zu
halten. Stattdessen ist Moses gezwungen, diese Daten bei jedem Neustart erneut von der
Festplatte zu laden. Unser neuer Sprachmodellserver verschiebt die Verarbeitung der Sprach-
modelldaten in einen eigenen, dedizierten Prozess. Dieser Ansatz erlaubt es dann, jene Daten
aus dem Netzwerk oder sogar von einem Server aus dem Internet zu laden und kann zudem
verwendet werden, um die Sprachmodelldaten anderen Anwendungen zugänglich zu machen.
Hierfür steht ein einfaches, text-basiertes Kommunikationsprotokoll bereit.

Abschließend haben wir versucht, ein gigantisches Sprachmodell aus den im letzten Jahr von
Google veröffentlichten N-gram Daten des Google 5-gram Corpus zu generieren. Momentane
Beschränkungen des Moses MT Frameworks behinderten unsere Evaluationsbemühungen,
daher können keine abschließenden Ergebnisse angegeben werden. Stattdessen haben wir
weitergehende Verbesserungsmöglichkeiten am Moses Decoder indentifiziert, die notwendig
sind, bevor das gesamte Potenzial sehr großer Sprachmodelle ausgeschöpft werden kann.

iv

Acknowledgements

I would like to express my gratitude to my supervisors Andreas Eisele and Hans Uszkoreit
who provided me with a challenging and interesting topic for my diploma thesis. In the same
way I want to thank Reinhard Wilhelm for his willingness to examine this thesis.

Andreas constant support and mentorship, his encouragement and continuous guidance have
greatly contributed to the success of this work and are highly appreciated. Thanks a lot!

I also want to take the time to thank all those who have aided me in the creation of this
thesis work. In alphabetical order, these are Stephan Busemann, Bertold Crysmann, Bernd
Kiefer, Marc Schröder, and Hendrik Zender. I am also indebted to everyone at the Language
Techonology lab at DFKI.

Last but not least, I want to thank all my family and friends who have supported me over the
years and thus had an important share in the successful completion of this thesis. In random
order, these would be my grandmother, my grandfather, my parents, my sister Maike, my
brother Alexander, my girlfriend Kira and the whole crazy bunch of friends out there, you
know who you are. Thank you very much, your help is greatly appreciated.

v

vi

Contents

Contents

Abstract iii

Zusammenfassung iv

Acknowledgements v

1 Introduction 1
1.1 Motivation . 1

1.1.1 Statistical Language Models . 1
1.2 State-of-the-art Language Models . 2
1.3 Decoder Startup Times . 4
1.4 Thesis Goals . 4
1.5 Thesis Overview . 5

2 Building A Baseline System 7
2.1 Motivation . 7
2.2 Requirements . 8
2.3 SRILM Toolkit . 8

2.3.1 Description . 8
2.3.2 Software . 8
2.3.3 Installation . 9
2.3.4 Usage . 10

2.4 GIZA++ & mkcls . 11
2.4.1 Description . 11
2.4.2 Software . 11
2.4.3 Installation . 11
2.4.4 Usage . 12

2.5 Moses Decoder . 12
2.5.1 Description . 12
2.5.2 Software . 12

vii

Contents

2.5.3 Installation . 13
2.5.4 Usage . 13
2.5.5 Additional Requirements . 14

2.6 Basic Training . 14
2.6.1 Preparational Steps . 14
2.6.2 Training Step . 14

2.7 Minimum Error Rate Training . 15
2.8 Evaluation . 15
2.9 Summary . 16

3 N-gram Indexing 17
3.1 Motivation . 17

3.1.1 Possible Solutions . 18
3.1.2 Character-level N-gram Indexing . 18
3.1.3 Definition: N-gram Prefix . 19
3.1.4 An Indexing Example . 19

3.2 Basic Algorithm . 21
3.3 Indexing Methods . 22

3.3.1 Increasing Indexing . 22
3.3.2 Decreasing Indexing . 22
3.3.3 Uniform Indexing . 23
3.3.4 Custom Indexing . 23

3.4 Evaluation . 24
3.4.1 Definition: Compression Rate . 24
3.4.2 Definition: Large Subset . 24
3.4.3 Definition: Large Subset Rate . 24
3.4.4 Definition: Compression Gain . 25
3.4.5 Evaluation Concept . 25
3.4.6 Evaluation Results . 25

3.5 Indexer Tool . 29
3.6 File Formats . 30

3.6.1 Index Data Format . 30
3.6.2 Unigram Vocabulary Format . 31

3.7 Summary . 32

4 An Indexed Language Model 33
4.1 Motivation . 33
4.2 General Design . 33
4.3 IndexedLM . 34

viii

Contents

4.3.1 Vocabulary Data . 34
4.3.2 Index Data . 35
4.3.3 Comparison of the Different Index Data Structures 38
4.3.4 Final Implementation . 38
4.3.5 N-gram Cache . 39
4.3.6 N-gram Retrieval . 40
4.3.7 Retrieval Algorithm . 40

4.4 LanguageModelIndexed . 42
4.4.1 Interaction with IndexedLM . 42
4.4.2 Interaction with Moses . 43
4.4.3 Moses Integration . 44

4.5 Comparison to the SRILM Model . 44
4.5.1 Performance . 44

4.6 IndexedLM vs. SRILM . 45
4.7 Summary . 47

5 A Standalone Language Model Server 49
5.1 Motivation . 49

5.1.1 Further Applications . 49
5.2 General Design . 50
5.3 Server Modes . 51
5.4 TCP Server . 51

5.4.1 Advantages . 51
5.4.2 Disadvantages . 51
5.4.3 Overview . 52

5.5 IPC Server . 53
5.5.1 Advantages . 53
5.5.2 Disadvantages . 53

5.6 Server Mode Comparison . 55
5.7 Protocol . 55

5.7.1 Request Format . 55
5.7.2 Result Format . 55
5.7.3 Protocol Commands . 56
5.7.4 Description . 56

5.8 LanguageModelRemote . 58
5.8.1 Interaction with Moses . 58
5.8.2 Moses Integration . 59

5.9 Comparison to the SRILM Model . 59
5.9.1 Performance . 59

ix

Contents

5.9.2 Limitations . 59
5.10 Summary . 60

6 A Google 5-gram Language Model 61
6.1 Motivation . 61
6.2 Google 5-gram Corpus . 61
6.3 Corpus Preparation . 62
6.4 Language Model Generation . 62
6.5 Indexing . 63
6.6 Index Merging . 64
6.7 Evaluation . 65
6.8 Summary . 66

7 Conclusion 67
7.1 Work Done . 67

7.1.1 Indexed Language Model . 67
7.1.2 Language Model Server . 68

7.2 Lessons Learnt . 69
7.2.1 Indexed Language Model . 69
7.2.2 Language Model Server . 69
7.2.3 Google Language Model . 69

7.3 Future Work . 70
7.3.1 Improved Performance . 70
7.3.2 Separation of Language Model Data 70
7.3.3 Batched N-gram Requests . 70
7.3.4 More Flexible Phrase-tables . 71
7.3.5 Hybrid Language Models . 71

Appendix Introduction 73
Source Code License . 73

A N-gram Indexing Code 75
A.1 Class: Indexer . 75

A.1.1 Constants . 75
A.1.2 Typedefs . 76
A.1.3 Public Interface . 76
A.1.4 Private Interface . 77
A.1.5 Data Members . 78

A.2 Program: Main Loop . 79
A.2.1 Code . 79

x

Contents

A.3 Struct: IndexData . 80
A.3.1 Struct Definition . 80

A.4 Features . 80
A.4.1 Autoflush . 80
A.4.2 Sorted Model Files . 81

B Indexed Language Model Code 83
B.1 Class: IndexedLM . 83

B.1.1 Typedefs . 83
B.1.2 Public Interface . 84
B.1.3 Private Interface . 86
B.1.4 Data Members . 86
B.1.5 Struct: NGramData . 87

B.2 Class: IndexTree . 88
B.2.1 Typedefs . 88
B.2.2 Public Interface . 88
B.2.3 Data Members . 90
B.2.4 Struct: ExtendedIndexData . 90

B.3 Class: NgramTree . 90
B.3.1 Typedefs . 91
B.3.2 Public Interface . 91
B.3.3 Private Interface . 93
B.3.4 Data Members . 93

C Language Model Server Code 95
C.1 Class: LanguageModelServer . 95

C.1.1 Constants . 95
C.1.2 Typedefs . 96
C.1.3 Public Interface . 96
C.1.4 Private Interface . 98
C.1.5 General Data Members . 98
C.1.6 TCP Data Members . 99
C.1.7 IPC Data Members . 99

C.2 Program: Main Loop . 100
C.2.1 Code . 100

C.3 TCP Implementation . 101
C.4 IPC Implementation . 101

D Tables 103

xi

Contents

Bibliography 114

xii

List of Figures

List of Figures

3.1 Relation between n-gram prefixes and n-grams in a language model file 20
3.2 Increasing indexing: compression gain (y) for increasing subset threshold (x) 26
3.3 Decreasing indexing: compression gain (y) for increasing subset threshold (x) 27
3.4 Uniform indexing: compression gain (y) for increasing subset threshold (x) . 28

4.1 Design of an indexed language model . 34
4.2 IndexedLM cache overview . 39
4.3 Interactions between LanguageModelIndexed and IndexedLM 43
4.4 Interactions between Moses and LanguageModelIndexed 43

5.1 Design of a language model server . 50
5.2 Flow chart of the TCP server mode . 52
5.3 Flow chart of the IPC server mode . 54
5.4 Interactions between Moses and LanguageModelRemote 58

xiii

List of Figures

xiv

List of Tables

List of Tables

1.1 Influence of increasing n-gram order . 2
1.2 Performance loss introduced by language model loading 4

3.1 Character-level n-gram prefixes example . 19
3.2 Increasing Indexing example . 22
3.3 Decreasing Indexing example . 22
3.4 Uniform Indexing example . 23
3.5 Custom Indexing example . 23

4.1 Subset data for language model files . 35
4.2 Binary format for language model files . 36
4.3 Binary tree format for language model files 37
4.4 C++ std::map index data structure . 38
4.5 Custom index tree index data structure . 38
4.6 Index tree with binary model index data structure 38
4.7 Index tree with binary tree model index data structure 38
4.8 N-gram retrieval example, all scores in log10 format 41
4.9 N-gram probability construction, all scores in log10 format 42
4.10 Changes to the Moses framework . 44
4.11 Additions to the Moses framework . 44
4.12 Overview of all evaluation language models 45
4.13 SRI language model performance within the Moses MT framework 46
4.14 Indexed language model performance within the Moses MT framework 46

5.1 Comparison of language model server modes 55
5.2 Protocol commands for the language model server 56
5.3 Changes to the Moses framework . 59
5.4 Additions to the Moses framework . 59

6.1 Google 5-gram corpus counts . 62

xv

List of Tables

D.1 Increasing Indexing with Γ = [1, 0, 0, 0, 0] . 104
D.2 Increasing Indexing with Γ = [1, 2, 0, 0, 0] . 104
D.3 Increasing Indexing with Γ = [1, 2, 3, 0, 0] . 104
D.4 Increasing Indexing with Γ = [1, 2, 3, 4, 0] . 105
D.5 Increasing Indexing with Γ = [1, 2, 3, 4, 5] . 105
D.6 Decreasing Indexing with Γ = [1, 0, 0, 0, 0] . 105
D.7 Decreasing Indexing with Γ = [2, 1, 0, 0, 0] . 106
D.8 Decreasing Indexing with Γ = [3, 2, 1, 0, 0] . 106
D.9 Decreasing Indexing with Γ = [4, 3, 2, 1, 0] . 106
D.10 Decreasing Indexing with Γ = [5, 4, 3, 2, 1] . 107
D.11 Uniform Indexing with Γ = [1, 1, 1, 1, 1] . 107
D.12 Uniform Indexing with Γ = [2, 2, 2, 2, 2] . 107
D.13 Uniform Indexing with Γ = [3, 3, 3, 3, 3] . 108
D.14 Uniform Indexing with Γ = [4, 4, 4, 4, 4] . 108
D.15 Uniform Indexing with Γ = [5, 5, 5, 5, 5] . 108
D.16 Custom Indexing with Γ = [1, 1, 1, 1, 0] . 109
D.17 Custom Indexing with Γ = [1, 1, 1, 0, 0] . 109
D.18 Custom Indexing with Γ = [1, 1, 0, 0, 0] . 109
D.19 Custom Indexing with Γ = [2, 2, 2, 2, 0] . 110
D.20 Custom Indexing with Γ = [2, 2, 2, 0, 0] . 110
D.21 Custom Indexing with Γ = [2, 2, 0, 0, 0] . 110
D.22 Custom Indexing with Γ = [3, 3, 3, 0, 0] . 111
D.23 Custom Indexing with Γ = [3, 3, 0, 0, 0] . 111
D.24 Custom Indexing with Γ = [4, 4, 0, 0, 0] . 111
D.25 Custom Indexing with Γ = [2, 1, 1, 0, 0] . 112
D.26 Custom Indexing with Γ = [3, 2, 2, 0, 0] . 112
D.27 Custom Indexing with Γ = [3, 1, 1, 0, 0] . 112
D.28 Custom Indexing with Γ = [3, 1, 0, 0, 0] . 113
D.29 Custom Indexing with Γ = [1, 2, 2, 0, 0] . 113
D.30 Custom Indexing with Γ = [2, 3, 0, 0, 0] . 113

xvi

Chapter 1

Introduction

1.1 Motivation

Statistical machine translation (SMT) has proven to be able to create usable translations
given a sufficient amount of training data. As more and more training data has become
available over the last years and as there exists an increasing demand for shallow transla-
tion systems statistical machine translation represents one of the most interesting and active
topics in current research on natural language processing [Callison-Burch and Koehn, 2005],
[Koehn et al., 2007].

A typical SMT system is divided into two core modules: the translation model and the
language model. The translation model takes a given source sentence and creates possible
translation hypotheses together with corresponding scores which describe the probability of
each of the hypotheses with regard to the source sentence. Thereafter, the hypotheses are sent
to a statistical language model which rates each of the possibilities and assigns an additional
score describing the likeliness of the given hypothesis in natural language text. The weighted
combination of these scores is then used to determine the most likely translation.

1.1.1 Statistical Language Models

The term statistical language model describes a family of language models which model natural
languages using the statistical properties of n-grams. N-grams are sequences of single words.
For these models it is assumed that each word depends only on a context of (n − 1) words
instead of the full corpus. This Markov model assumption greatly simplifies the problem
of language model training thus enabling us to use language modeling for statistical machine
translation systems.

1

Chapter 1 Introduction

First applications of n-gram language models were developed in the field of automatic speech
recognition (ASR) [Jelinek, 1999]. The general approach of statistical language modeling has
the advantage that it is not bound to a certain application area, in fact it is possible to use
the same language model for SMT, ASR or OCR 1.

There exist several known limitations of n-gram models, most notably they are not able
to model long range dependencies as they can only explicitly support dependency ranges up
to (n − 1) tokens. Furthermore Markov models have been criticized for not capturing the
performance/competence distinction introduced by Noam Chomsky.

However empirical experiments have shown that statistical language modeling can be applied
to create usable translations. While pure linguistic theory approaches usually only model lan-
guage competence the statistical n-gram models also implicitly include language performance
features. Hence whenever real world applications are developed the pragmatic n-gram
approach is preferable.

The quality of n-gram language modeling can directly be improved by training the models on
larger text corpora. This is a property of the statistical nature of the approach. As we stated
above large amounts of training data have become available over the last years, data which
can now be used to build better statistical language models. This thesis work will concentrate
on improving statistical language models for SMT.

1.2 State-of-the-art Language Models

As we have argued before, it has become a lot easier to collect large amounts of monolingual
training data for language model creation. This enables us to use fourgrams or even fivegrams
instead of just trigrams. In order to show an improved translation quality using such higher
order n-grams, we have trained a baseline MT system and evaluated the overall performance
using three different English language models: a trigram model, a fourgram model, and a
fivegram language model.

n-gram order BLEU score runtime [s]
3 37.14 111
4 39.14 136
5 39.7 147

Table 1.1: Influence of increasing n-gram order

Table 1.1 lists the BLEU scores [Papineni et al., 2002] and the overall runtime in seconds.

1Optical Character Recognition

2

Section 1.2 State-of-the-art Language Models

All three language models have been trained from the same fraction of the Europarl corpus
[Koehn, 2005], only the maximum n-gram order differed. The tests were performed using a
set of 100 sentences.

We can observe an improved translation quality with increasing language model n-gram order.
At the same time, performance decreases as decoding becomes more complex when n-grams
of higher order are used. Considering the fact that the performance loss is not too severe and
an improvement to the translation quality is very welcome, it seems to be a sound assumption
that fivegrams should be considered state-of-the-art for statistical machine translation.

As current language models are generated from enormous amounts of training data they will
also need large amounts of memory to be usable within current machine translation systems.
The drawback of the SRI [Stolcke, 2002] language model implementation lies in the fact that
all n-gram data has to be loaded into memory at the same time, even if only a fraction of all
this data would be needed to translate the given source text.

Computer memory is becoming cheaper, however it remains an expensive resource, especially
when compared to the low cost of fast hard disks. Therefore it seems to be a valuable effort
to investigate new methods for language model handling which try to reduce memory usage.
Instead of using a single machine with large amounts of memory to translate a given source
text, it is perfectly possible to distribute this task to several machines which only translate
parts of the source text.

With the standard SRI language model, all these machines would require the same large
amount of memory to handle a large language model. If instead we could use another language
model with reduced memory requirements even for large n-gram sets, all computers within
our cluster could be equipped with less memory and would still be able to translate their
share of the source text. As this cluster solution would redistribute the whole workload to
several machines, it would be even be possible for the new language model to take more time
to complete compared to the original SRILM implementation.

Often clusters of several dozens or hundreds of machines are already available in large com-
panies or institutions. These could easily be used to translate a given source text with such
a new language model, the only requirement would be an adaption to the actual amount of
memory available on each of the cluster nodes. Our new language model would create an
index on the full n-gram data set and only load the index data to memory, the size of this
index could be controlled to fit the memory limitations within our cluster.

3

Chapter 1 Introduction

As we have shown above, fivegram language models help to create better translations. How-
ever they require more memory which could lead to problems once really large language
models are built. As memory is an expensive resource, we propose a new, indexed language
model instead which can be adapted to require less memory than the corresponding language
model in SRI format.

1.3 Decoder Startup Times

The current implementation of the Moses decoder [Koehn et al., 2007] also suffers from slow
startup times which are caused by language model loading. Even if the decoder would use
the same language model for a certain amount of translation requests, it would still have to
load the full n-gram data from hard disk each time it is started.

The following table shows how much of the actual decoder runtime is required to perform
startup tasks which include the loading of language model data and phrase-table handling.
It compares these values to the full decoder runtime and shows the procentual runtime
loss caused by loading the language model. The tests were performed using the same set of
100 sentences as in section 1.2.

n-gram order model size startup [s] runtime [s] loss
3 90 MB 172 274 63%
4 145 MB 157 273 58%
5 185 MB 170 293 58%

Table 1.2: Performance loss introduced by language model loading

These results clearly show that the Moses MT framework could benefit from a new language
model class which would only interact with a preloaded language model instead of loading all
n-gram data again and again. Such a preloaded language model could be hosted by a dedicated
server, access could be possible from the same machine or even from a network.

1.4 Thesis Goals

In this diploma thesis we will describe a new language model class within the Moses MT
framework. This language model class differs from the well known SRI model as it does not
load all n-gram data into memory but only an index of all n-grams contained within the model
data. Actual n-gram data is loaded dynamically from hard disk. This aims to reduce memory
requirements while trying to ensure full compatibility to the original SRI model.

4

Section 1.5 Thesis Overview

We will implement the indexed language model as a new class inside the existing Moses MT
framework. The Moses decoder was chosen as it is the current state of the art in machine
translation. Even better, it is developed and maintained as an open source community project
and can be easily extended.

Next to the new language model class, we will develop a second extension, a language model
server, which can be used to host language model data using a dedicated server. As we have
seen above, decoder startup times are slowed down by the loading of n-gram data. These
could be reduced by the introduction of a language model server.

Another advantage lies in the fact that decoder and language model would not have to be
located on the same machine anymore, the language model server could also be hosted on
a local network or the internet. Finally, this could enable language model usage in other
applications which are not built using the Moses MT framework.

1.5 Thesis Overview

The complete thesis is divided into 7 chapters which are described below:

! Chapter 1: Introduction motivates the development of a new indexed language
model and a language model server application to be used with the Moses MT frame-
work. These enable the usage of very large language models with the Moses decoder.

! Chapter 2: Building A Baseline System describes how a baseline translation
system can be setup on top of the Moses MT framework. This includes information on
how to compile the SRILM toolkit and the Moses code. Both language model training
and phrase-table generation are discussed and examples how to translate texts and to
evaluate these translations are given.

! Chapter 3: N-gram Indexing defines the notion of character-level n-gram prefixes.
These can be used to efficiently index large sets of n-gram data and can hence be
used for the indexed language model. Several indexing methods are discussed and
compared with respect to compression rate and actual compression gain. Additionally,
the implementation of the Indexer tool is described.

! Chapter 4: An Indexed Language Model shows the design and implementation
of an indexed language model class within the Moses MT framework. Several possible
data structures for the index data are presented and compared, integration into and
interaction with the Moses decoder are discussed, and compatibility to the original
SRILM implementation is evaluated.

5

Chapter 1 Introduction

! Chapter 5: A Standalone Language Model Server describes how we created a
standalone language model server application which can be queried from the Moses
decoder or other applications. Access to the server is possible using either TCP/IP
connections or IPC shared memory methods. A simple server protocol is designed
which can be used to lookup n-gram data.

! Chapter 6: A Google 5-gram Language Model shows how a very large language
model can be created using the Google fivegram corpus which was released in late 2006.
As training with the SRILM toolkit failed, only a basic language model could be created.
Translation quality is evaluated and limitations are discussed.

! Chapter 7: Conclusion summarizes what we have learned while working on this
diploma thesis. It describes what has been achieved and what has not been possible to
do. Finally it discusses possible future extensions of the indexed language model and
the language model server application.

6

Chapter 2

Building A Baseline System

2.1 Motivation

Not too long ago, statistical machine translation software was expensive, closed source and
inflexible. The long time standard, the Pharaoh decoder [Koehn, 2004a] by Philipp Koehn,
was only available in binary form and so even small modifications to the decoding system
were not possible. Luckily, things have changed and improved in recent years.

With the introduction of the Moses decoder which was developed by a large group of volunteers
lead by Philipp Koehn and Hieu Hoang [Koehn et al., 2007], a fully compatible MT system
became available that was open for community modifications. This enables us to integrate
new ideas into the decoding system and to try to create better translations.

However, before actually integrating support for very large language models into the Moses
code, it is necessary to create a baseline system and evaluate performance and translation
quality of this system. These values can then later be used to compare the newly created
language model code to the current state of Moses decoder.

We will briefly discuss the steps which are needed to create such a baseline system on the
following pages.

7

Chapter 2 Building A Baseline System

2.2 Requirements

The baseline system uses the Moses decoder, language models are created using the SRILM
toolkit, word alignment during the training is done with GIZA++. All these can be freely
downloaded from the internet and are robust, well-tested tools.

Our baseline system has been installed on a Linux machine with 32GB of RAM and four Dual
Core AMD Opteron 885 CPUs. A second system has been installed on a 1.83 GHz MacBook
with 2GB of RAM. It should also be possible to setup and train such a system on a Windows
machine as all software is available for Windows as well, however this will not be explained
in this document.

2.3 SRILM Toolkit

2.3.1 Description

The SRILM toolkit [Stolcke, 2002] allows to create and apply statistical language models
for use in statistical machine translation, speech recognition and statistical tagging and seg-
mentation. For machine translation, SRILM language models are currently the gold standard,
support for them is already available inside the Moses MT system. The SRILM toolkit was
designed and implemented by Andreas Stolcke.

2.3.2 Software

The SRILM toolkit can be obtained from the internet at:

http://www.speech.sri.com/projects/srilm/

The toolkit may be downloaded free of charge under an open source community license mean-
ing that it can be used freely for non-profit purposes. A Mailing list for support and exchange
of information between SRILM users is available through:

srilm-user@speech.sri.com

8

Section 2.3 SRILM Toolkit

2.3.3 Installation

Assuming the downloaded SRILM archive file is named srilm.tar.gz it can be installed as
follows:

$ export $BASELINE=/home/cfedermann/diploma

$ mkdir $BASELINE/srilm

$ cp srilm.tar.gz $BASELINE/srilm

$ cd $BASELINE/srilm

$ tar xzf srilm.tar.gz

This will create a folder named srilm containing the SRILM code inside the $BASELINE
folder. In order to compile this code, the SRILM variable inside $BASELINE/srilm/Makefile

has to be configured.

SRILM = /home/cfedermann/diploma/srilm

It is also necessary to disable TCL usage and any special optimizations (like -mtune=pentium3)
inside the Makefile for the specific target machine. For example, if we try to build the SRILM
toolkit on Mac OS X, we change $BASELINE/srilm/common/Makefile.machine.macosx. We
add the following line to the Makefile and remove the existing TCL INCLUDE and TCL LIBRARY

definitions if available.

NO_TCL = X

TCL_INCLUDE =

TCL_LIBRARY =

Now, the SRILM code can be compiled and installed:

$ cd $SRILM

$ make World

It is crucial to verify that the compilation process worked correctly otherwise the base-
line system will not function properly. We can check this by calling the tests inside the
$BASELINE/srilm/test folder:

$ cd $SRILM/test

$ make all

In case of errors or any other problems during the installation process, there exists more
detailed documentation in the file INSTALL inside the SRILM folder. It is recommended to
add the SRILM binary folder, e.g. $SRILM/bin/macosx, to the global $PATH variable.

9

Chapter 2 Building A Baseline System

2.3.4 Usage

The most important command of the SRILM toolkit is the ngram-count tool which counts n-
grams and estimates language models. There exist several command line switches to fine-tune
the resulting language model, we will explain only some of them here. For more information
refer to the respective man page:

$ man ngram-count

A sorted 5-gram language model from a given English corpus in en.corpus can be created
using the following command:

$ ngram-count -sort -order 5 -interpolate -kndiscount\

-text en.corpus -lm en.srilm

The command line switches are explained below:

! -sort outputs n-gram counts in lexicographic order. This can be required for other
tools within the SRILM toolkit and is mandatory for the indexed language model that
will be presented later in this thesis.

! -order n sets the maximal order (or length) of n-grams to count. This also determines
the order of the language model.

! -interpolate causes the discounted n-gram probability estimates at the specified order
n to be interpolated with estimates of lower order.

! -kndiscount activates Chen and Goodman’s modified Kneser-Ney discounting for n-
grams.

! -text specifies the source file from which the language model data is estimated. This
file should contain one sentence per line, empty lines are ignored.

! -lm specifies the target file to which the language model data is written.

10

Section 2.4 GIZA++ & mkcls

2.4 GIZA++ & mkcls

2.4.1 Description

GIZA++ [Och and Ney, 2003] is a tool to compute word alignments between two sentence
aligned corpora, mkcls [Och, 1999] is a tool to train word classes using a maximum-likelihood
criterion. Both tools were designed and implemented by Franz Josef Och.

2.4.2 Software

The original version of GIZA++ and mkcls can be downloaded at:

http://www.fjoch.com/GIZA++.html

http://www.fjoch.com/mkcls.html

These versions of GIZA++ and mkcls will not compile with newer g++ 4.x compilers which
are standard on modern computer systems. There exist patched versions by Chris Dyer which
resolve these issues. They are available from:

http://ling.umd.edu/~redpony/software/

2.4.3 Installation

Assuming the GIZA++ and mkcls archive files are named GIZA++.tar.gz and mkcls.tar.gz,
they can be installed like this:

$ export $BASELINE=/home/cfedermann/diploma

$ cd $BASELINE

$ tar xzf GIZA++.tar.gz

$ tar xzf mkcls.tar.gz

This will create two folders GIZA++-v2 and mkcls-v2 inside the $BASELINE folder. In order
to compile the code for mkcls, it is just necessary to type:

$ cd $BASELINE/mkcls-v2

$ make

For GIZA++, a small change is required. The compiler flag -DBINARY SEARCH FOR TTABLE

has to be added to the CFLAGS definition inside the original Makefile:

CFLAGS = $(CFLAGS_GLOBAL) -Wall -W -Wno-deprecated\

-DBINARY_SEARCH_FOR_TTABLE

11

Chapter 2 Building A Baseline System

GIZA++ and its accompanying tools can then be compiled using:

$ cd $BASELINE/GIZA++-v2

$ make opt snt2cooc.out

The resulting binaries are called mkcls, GIZA++, snt2plain.out, plain2snt.out, and snt2cooc.out.
In order to make life a little easier, these will be copied to a central tools folder which is
placed inside the $BASELINE folder:

$ export $TOOLS=$BASELINE/tools

$ cd $BASELINE/GIZA++-v2

$ cp GIZA++ *.out $TOOLS

$ cp $BASELINE/mkcls-v2/mkcls $TOOLS

2.4.4 Usage

Both GIZA++ and mkcls will be called by Moses training scripts, you should not have to
invoke them yourself. Documentation is available in the corresponding README files.

2.5 Moses Decoder

2.5.1 Description

Moses is a statistical machine translation system which allows to train translation models for
any given language pair for which a parallel corpus, i.e. a collection of translated texts, exists.
The Moses decoder works using a beam search [Koehn, 2004a] algorithm to determine the
best translation for a given input. Translation is phrase-based [Koehn et al., 2003] and
allows words to have a factored representation. Moses has been designed by a team headed
by Philipp Koehn, implementation was mainly done by Hieu Hoang.

2.5.2 Software

The Moses source code can be obtained from the project website or the SourceForge Subver-
sion repository. The latest development version of the source code can be checked out using
the following command:

$ svn co https://mosesdecoder.svn.sourceforge.net/svnroot/\

mosesdecoder/trunk mosesdecoder

Stable releases of the software can be downloaded at:

http://mosesdecoder.sourceforge.net/download.php

12

Section 2.5 Moses Decoder

2.5.3 Installation

Assuming that the Moses source code is available in the $BASELINE folder, inside a subfolder
mosesdecoder, it can be configured and compiled using the following commands. Please
note that we have to specify the --with-srilm switch to enable SRILM language model
usage:

$ cd $BASELINE/mosesdecoder

$./regenerate-makefiles.sh

$./configure --with-srilm=$BASELINE/srilm

$ make -j 4

After compilation has finished, the moses binary should be copied to the tools folder:

$ cp $BASELINE/mosesdecoder/moses-cmd/src/moses $TOOLS

Moses includes a set of support tools which should be put inside a scripts folder inside the
tools folder. To correctly configure the path settings for the scrips, we have to edit the file
mosesdecoder/scripts/Makefile:

TARGETDIR=$(TOOLS)/scripts

BINDIR=$(TOOLS)

The support tools can be generated using:

$ cd $BASELINE/mosesdecoder/scripts

$ make release

This will generate (yet) another subfolder scripts-YYYYMMDD-HHMM inside $TOOLS/scripts

containing the current versions of the Moses scripts. To enable Moses to use them, the
SCRIPTS ROOTDIR variable has to be exported and set:

$ export SCRIPTS=$TOOLS/scripts

$ export SCRIPTS_ROOTDIR=$SCRIPTS/scripts-YYYYMMDD-HHMM

2.5.4 Usage

The Moses decoder relies on a fully trained translation model for a given language pair. Before
we will explain the steps necessary to create such a model, we will show the basic usage of
the decoder. Assuming we have our Moses configuration file available in moses.ini and want
to translate source.text, the corresponding call to Moses looks like this:

$ moses -config moses.ini -input-file source.text

13

Chapter 2 Building A Baseline System

2.5.5 Additional Requirements

Moses requires some additional tools for the training and evaluation processes. For training,
a tokenizer, and a lowercaser are necessary. These tools can be obtained from the website
of the 2007 ACL Workshop on Statistical Machine Translation at:

http://www.statmt.org/wmt07/scripts.tgz

Evaluation is done using the notion of BLEU [Papineni et al., 2002] scores. An appropriate
tool for this is the NIST BLEU scoring tool which is available here:

ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl

2.6 Basic Training

2.6.1 Preparational Steps

Assume we want to train a translation model for German to English. The first step is to
prepare the parallel corpus data. It has to be tokenized, lowercased and sentences which
would be too long to handle (and their correspondences in the other language) have to be
removed from the corpus.

Corpus preparation can be done as follows:

$ tokenizer.perl -l de < corpus.de > tokens.de

$ tokenizer.perl -l en < corpus.en > tokens.en

$ clean-corpus-n.perl tokens de en clean-corpus 1 40

$ lowercase.perl < clean-corpus.de > lowercased.de

$ lowercase.perl < clean-corpus.en > lowercased.en

2.6.2 Training Step

Once the corpus data is prepared, the actual training process can be started. Moses offers a
very helpful training script which is explained in more detail on the Moses website:

http://www.statmt.org/moses/?n=FactoredTraining.HomePage

In a nutshell, translation model training is done using:

$ train-factored-phrase-model.perl PARAMETERS

The training process takes a lot of time and memory to complete. Actual settings for the
PARAMETERS are discussed on the Moses website.

14

Section 2.7 Minimum Error Rate Training

2.7 Minimum Error Rate Training

It is possible to perform an optimization on the scoring weights which are used to produce
translations. This is called minimum error rate training (MERT) [Och, 2003] and works
by iteratively optimizing scoring weights for a test document which is translated and then
compared to a reference translation. Assuming we want to optimize weights using the files
tuning.de and tuning.en and a trained translation model from German to English is avail-
able in the baseline folder, a MERT can be performed using:

$ tokenizer.perl -l de < tuning.de > input.tokens

$ tokenizer.perl -l en < tuning.en > reference.tokens

$ lowercase.perl < input.tokens > input

$ lowercase.perl < reference.tokens > reference

$ mert-moses.pl input reference moses moses.ini\

--working-dir $BASELINE/tuning --rootdir $SCRIPTS

This will produce optimized weights for the given tuning document and store results inside a
tuning subfolder in the baseline folder. As with the basic training script, the mert-moses.pl
script will take a long time to finish. The final step is to insert the new weights into the basic
moses.ini:

$ reuse-weights.perl tuning/moses.ini < moses.ini\

> tuning/optimized-moses.ini

This results in an optimized version of the original moses.ini which is stored in a new
configuration file optimized-moses.ini inside the tuning folder.

2.8 Evaluation

Evaluation is done using the NIST BLEU scoring tool. Assuming a reference translation
evaluation.en exists, we can evaluate the translation quality of output.en which was trans-
lated from evaluation.de as follows:

$ mteval-v11b.pl -r evaluation.en -t output.en -s evaluation.de

The different command line switches have the following meanings:

! -r denotes the reference translation

! -t denotes the translation output

! -s denotes the translation input

15

Chapter 2 Building A Baseline System

It is also possible to use the multi-bleu.perl script to evaluate the translation quality. This
is easier to use as it does not require to wrap the translation files into SGML tags. Our
example would look like this if multi-bleu.perl was used:

$ multi-bleu.perl evaluation.en < output.en

2.9 Summary

In this chapter we have shown how to setup a baseline system for statistical machine
translation based upon open source software which is available at no charge. The system
is built using the SRILM toolkit for language modeling and GIZA++ for both sentence
alignment and phrase-table generation. Sentence decoding is done with the Moses decoder,
evaluation can be performed using several BLEU scoring tools.

16

Chapter 3

N-gram Indexing

3.1 Motivation

Whenever statistical machine translation is done this involves statistical language models of
the target language [Brown et al., 1993]. These models are used to rate the quality of inter-
mediate translation results and help to determine the best possible translation for a given sen-
tence. Current language models are often generated using the SRILM toolkit [Stolcke, 2002]
which was designed and implemented by Andreas Stolcke.

The standard file format for these models is called ARPA or Doug Paul format for N-gram
backoff models. Informally spoken, a file in ARPA format contains lots of n-grams, one per
line, each annotated with the corresponding conditional probability and (if available) a backoff
weight. A single line within such a file might look like this:

-0.4543365 twilight zone .

or like this, if a backoff weight is present:

-2.93419 the big -0.5056427

In recent years, the creation of high quality language models resulted in files up to 150 MB in
size. Often these models only contained n-grams up to a maximum order of 3, i.e. trigrams.
Such models could easily be stored inside the memory of a single computer, access was realized
by simple lookup of n-gram sequences from memory.

Nowadays things have changed. Due to an enormous amount of available source data, it
is now possible to create larger and larger language models which could help to improve
translation quality. These huge language models [Brants et al., 2007] will require a more
clever way to handle n-gram access as several GB of memory could be necessary to store the
full language model.

17

Chapter 3 N-gram Indexing

If not all of these n-grams are actually used for a specific translation task, parts of the allocated
memory are just blocked without purpose and thus wasted. However, even if all superfluous
n-grams inside a given large language model would be filtered out a priori, it is still very
likely that we will experience problems with the amount of memory which is required to store
the full language model.

3.1.1 Possible Solutions

There exist several possible solutions to integrate support for very large language models
into the existing frameworks for statistical machine translation. For instance, it might be
interesting to use a hash function based approach to reduce the n-gram data size requirements.
It is also possible to think of a method which loads only very frequent n-grams into memory
and handles rare n-grams by hard disk access.

For this thesis, we decided to investigate a different approach which we will call character-
level n-gram indexing. This technique has been chosen because it is easy to understand
and as it allows a very fine-grained control on the amount of n-gram data which has to be
loaded into memory. We will describe and define this approach on the following pages.

3.1.2 Character-level N-gram Indexing

Instead of loading the full n-gram data into the computer’s memory, this data is indexed
using some (hopefully) clever indexing method and only the resulting index data is stored in
memory. That way only a small fraction of the original data has to be handled online, the
vast majority of the n-gram data will remain offline and can be handled on demand. As the
name implies, we will create the index data based on character-level n-gram prefixes.

It is quite clear that all n-gram computations then require lookup of the respective n-grams
from hard disk. This will take more time than equivalent lookup operations from memory but
otherwise it would not be possible to utilize a large language model at all once the computer
cannot provide enough dedicated memory. Hard disk access can also be reduced by caching of
already processed n-grams and by using a good indexing method which minimizes the average
number of n-grams to read from hard disk for any given index key.

18

Section 3.1 Motivation

3.1.3 Definition: N-gram Prefix

We define n-gram indexing using the notion of so called n-gram prefixes. Given an arbitrary
n-gram w1w2...wn and a set of parameters {Γ1,Γ2, ...,Γn}, Γi ∈ N+

0 , the character-level n-gram
prefix set is computed as follows:

Keyi = wi[0 : Γi] (3.1)

Prefixn = {Key1, Key2, ...,Keyn} (3.2)

where w[0 : m] denotes the m-prefix of a given string w. Thus the indexing method takes the
first Γi characters for each of the words wi which create the full n-gram and creates the index
key set out of them. A parameter value of 0 will give an empty index key ε, any parameter
value Γi > length(wi) will return the full word wi as index key.

This is what we formally define as the character-level n-gram prefix. Any indexing method
of this family can be uniquely defined by the corresponding set of parameters {Γ1,Γ2, ...,Γn}.
It is convenient to represent the complete n-gram prefix set as a string with spaces inserted
as delimiters.

3.1.4 An Indexing Example

An Example should make the general idea clear. Assume we want to index the 5-gram ”the
big ogre wants food” using n-gram prefixes. Given a uniform weighting of Γ1 = ... = Γ5,
the character-level n-gram prefixes for this n-gram, ordered by increasing parameters Γi,
would look like this:

Γi character-level n-gram prefix
1 "t b o w f"

2 "th bi og wa fo"

3 "the big ogr wan foo"

4 "the big ogre want food"

5 "the big ogre wants food"

Table 3.1: Character-level n-gram prefixes example

19

Chapter 3 N-gram Indexing

When applied onto an actual language model file, each of the n-gram prefixes represents
exactly the subset of n-grams which match the respective n-gram prefix. Each subset can
be uniquely determined by the position of the first matching n-gram line within the original
language model file and the total number of matching n-grams. Figure 3.1 illustrates the
basic relationship between n-gram prefixes and n-gram subsets:































Figure 3.1: Relation between n-gram prefixes and n-grams in a language model file

To index a language model using n-gram prefixes, the file position and the n-gram line count
are stored as the index value for each of the n-gram prefixes. The n-gram prefixes themselves
serve as index keys. In practice that might look similar to this:

"th is fe" → "393815:2"

The above representation encodes that the n-gram prefix ”th is fe” occurs at position 393,815
in the corresponding language model file and is valid for the following 2 lines of content.

Whenever we encounter an n-gram with this n-gram prefix and want to lookup the correspond-
ing n-gram data, we would have to jump to position 393,815 inside the respective language
model file, read in the following two lines and check whether the given n-gram is contained
in any of them. If that is the case, we have found our n-gram and can return its conditional
probability and backoff weight. If not, the n-gram is unknown as it is not contained within
the language model data.

20

Section 3.2 Basic Algorithm

3.2 Basic Algorithm

The basic algorithm for language model indexing based on character-level n-gram prefixes is
explained on the next page. In fact, it is quite simple: it requires a given language model in
ARPA format and a set of parameters which will be used for computing the index keys of the
n-gram prefix for each n-gram inside the language model.

Algorithm 1 character-level n-gram indexer
Require: language model file LM in ARPA format,

set of parameter values Γ = {Γ1,Γ2,,Γn}
1: index = ∅
2: while ∃ some n-gram in LM do
3: current-ngram ← LM
4: index = index ∪ NGRAM-PREFIX(current-ngram, Γ)
5: end while
6: return index

The pseudo-code does the following:

! line 1 initializes the index set.

! lines 2-5 represent the main loop which iterates over all n-grams.

! line 3 reads the current ngram from the language model file.

! line 4 computes the n-gram prefix for this n-gram and adds the result to the index set.

! line 6 finally returns the index set as result of the algorithm

The most important part of the algorithm is the choice of the actual indexing method
used inside NGRAM-PREFIX, i.e. the choice of the set of parameters Γ. We will describe
and define several possible indexing methods in the next section.

21

Chapter 3 N-gram Indexing

3.3 Indexing Methods

3.3.1 Increasing Indexing

This indexing method creates increasingly larger index keys Keyi for the words wi of a given
n-gram w1 w2 ... wn:

Γ1 = 1 (3.3)

Γ = {Γ1,Γ2, ...,Γn | ∀i > 1 : Γi = Γi−1 + 1} (3.4)

For our ”the big ogre wants food” example this would yield the n-gram prefix:

Γ character-level n-gram prefix
[1, 2, 3, 4, 5] "t bi ogr want food"

Table 3.2: Increasing Indexing example

This method could be optimized by setting some maximum index position imax after which
all Γi, i > imax are clipped and set to 0 so that they can be neglected when constructing
the index.

3.3.2 Decreasing Indexing

Decreasing Indexing effectively means reverse increasing indexing. Here the first index key is
the largest and all subsequent index keys are of decreasing size.

Γ1 = Γmax, Γmax ∈ N+ (3.5)

Γ = {Γ1,Γ2, ...,Γn | ∀i > 1 : Γi = Γi−1 − 1, Γi ∈ N+
0 } (3.6)

Assuming Γmax = 4, the n-gram prefix for the example sentence changes to:

Γ character-level n-gram prefix
[4, 3, 2, 1, 0] "the big og w ε"

Table 3.3: Decreasing Indexing example

Depending on the actual implementation of the indexing method, the empty index key ε can
either be represented as a blank space " " or simply be left out of the index key.

22

Section 3.3 Indexing Methods

3.3.3 Uniform Indexing

This is the easiest possible indexing method. It assumes uniform parameters Γ1 = Γ2 = ... = Γn

which means that all index keys Keyi are of equal size:

Γ1 = Γmax, Γmax ∈ N+ (3.7)

Γ = {Γ1,Γ2, ...,Γn | ∀i > 1 : Γi = Γi−1} (3.8)

Given Γmax = 3, the character-level n-gram prefix for our example looks like this if we apply
uniform indexing:

Γ character-level n-gram prefix
[3, 3, 3, 3, 3] "the big ogr wan foo"

Table 3.4: Uniform Indexing example

Again, it may be clever to define a maximum index position imax to decrease index size and
to reduce index construction time.

3.3.4 Custom Indexing

It is also possible to design a custom indexing method which simply relies on the given set of
Γi parameter values and does not assume any relation between these. Formally:

Γ = {Γ1,Γ2, ...,Γn | ∀i ≥ 1 : Γi ∈ N+
0 } (3.9)

Example:

Γ character-level n-gram prefix
[3, 2, 0, 2, 1] "the bi ε wa f"

Table 3.5: Custom Indexing example

Depending on the actual application of the indexing method, such a custom indexing approach
might be a better choice than the three methods defined above as the custom Γi parameters
give a more fine-grained control on the creation of the index data. However it is important to
take care of the empty index key ε. The decision to represent it as a blank space " " or
to simply leave it out of the n-gram prefix has to be taken based on application needs.

23

Chapter 3 N-gram Indexing

3.4 Evaluation

For evaluation of these indexing methods, we will define the notions of compression rate,
large subset rate and compression gain. These can be used to effectively rate any possible
indexing method.

3.4.1 Definition: Compression Rate

CompressionRate = 1− SIZE(index set)
SIZE(ngram set)

(3.10)

The compression rate compares the size of the generated index data with the size of the
original n-gram collection and can be used to determine the compression factor of the indexing
operation. A value of 0 represents no compression, any larger value represents some actual
compression of the n-gram data.

3.4.2 Definition: Large Subset

Each index entry refers to a certain part of the original language model, a certain subset.
In order to access this data, the corresponding lines within the language model have to be
looked up from hard disk. As hard disk access is relatively slow, it makes sense to keep the
average subsets small and to prevent the creation of very large n-gram subsets.

For evaluation, we define a certain threshold, the so-called subset threshold which divides
the n-gram data subsets into small and large subsets.

3.4.3 Definition: Large Subset Rate

LargeSubsetRate =
COUNT (large subsets)

SIZE(ngram set)
(3.11)

The large subset rate describes the ratio between the line count of all large subsets and the size
of the original n-gram collection. Effectively, this is the part of the language model which is
considered too costly to process. Hence a good indexing method should always try to minimize
the large subset rate.

24

Section 3.4 Evaluation

3.4.4 Definition: Compression Gain

CompressionGain = CompressionRate− LargeSubsetRate (3.12)

Compression gain represents a measure to rate the quality of an indexing method. It compares
the compression rate and the large subset rate. The first one is optimal if the index is very
small, the second one is optimal if the number of large subsets is very small. As these two
values are diametrically opposed, their difference represents the amount of language model
data which does not have to be handled online and can be efficiently processed. Effectively,
this is the amount of saving, the indexing method has achieved.

3.4.5 Evaluation Concept

An optimal indexing method should minimize both the size of the generated index (which
maximizes the compression rate) and the line count of all large subsets (which maximizes the
compression gain).

3.4.6 Evaluation Results

Indexing methods have been evaluated using an English language model containing 10,037,283
n-grams which was about 324MB in size. The maximum n-gram order was 5. The results
showed that:

! increasing indexing yields good and robust compression rates and relatively good large
subset values. Indexing up to 3 words seemed to suffice even for the 5-gram model.

! decreasing indexing gives the best compression rates at the cost of more large subsets.
Again, indexing only the first 3 words of each n-gram created the best results which
were even better than the corresponding results from increasing indexing.

! uniform indexing constructs large index sets which results in a bad compression rate.
Small Γ values seem to work best, but compared to the other indexing methods, uniform
indexing does not perform too well.

! custom indexing heavily relies on the chosen set of Γi parameters. While some of the
custom results were remarkably good, others performed outstandingly bad.

More detailed information on the evaluation results is available in the following figures. The
x-axis represents the subset threshold, the y-axis shows the compression gain. The full eval-
uation results are available in Appendix D.

25

Chapter 3 N-gram Indexing


"

#$
%&

'%
&

&"
($

$&
)%

"
""

*$
#+&

#

%(()(

#








F
igure

3.2:
Increasing

indexing:
com

pression
gain

(y)
for

increasing
subset

threshold
(x)

26

Section 3.4 Evaluation


"


#$


%&


'%


&


&"


($


$&


)%


"


""


*$


#+
&
#


%(()(#






























F
ig

ur
e

3.
3:

D
ec

re
as

in
g

in
de

xi
ng

:
co

m
pr

es
si

on
ga

in
(y

)
fo

r
in

cr
ea

si
ng

su
bs

et
th

re
sh

ol
d

(x
)

27

Chapter 3 N-gram Indexing


"

#$
%&

'%
&

&"
($

$&
)%

"
""

*$
#+&

#

%(()(

#









F
igure

3.4:
U

niform
indexing:

com
pression

gain
(y)

for
increasing

subset
threshold

(x)

28

Section 3.5 Indexer Tool

3.5 Indexer Tool

The indexer tool allows to create a character-level n-gram index for one or several language
models in ARPA format. Furthermore it creates a unigram vocabulary which contains all
unigrams included within the language model files. The Indexer tool provides the following
command line options:

-l or --lm=<file #1>,[<file #2>,...,<file #n>]

-i or --index=<index file>

-v or --vocab=<vocabulary file>

-m or --method={increasing | decreasing | uniform | custom}

-g or --gamma=<gamma #1>[,<gamma #2>,...,<gamma #n>]

-n or --no-autoflush

-f or --file_id=<start_id>

These options are explained below:

! Language Model parameter: the Indexer tool works on language model files in
ARPA format. These files can be specified using the --lm command line switch. It
is possible to specify only a single language model --lm=<file #1> or multiple files
--lm=<file #1>,<file #2>,...,<file #n>.

! Index parameter: all index data is written to the index file. The corresponding file
name is specified using the --index=<index file> switch.

! Vocabulary parameter: the unigram vocabulary data is written to the vocabulary
file which is specified using the --vocab=<vocabulary file> switch.

! Method parameter: this parameter allows to choose the actual indexing method
which should be used to generate the index data from the language model file(s). The
Indexer tool supports increased indexing for --method=increasing, decreasing indexing
using --method=decreasing, uniform indexing with --method=uniform and custom
indexing given --method=custom.

For the first three of these it is only necessary to specify a single Γ value which is then
interpreted as Γ1 or as Γmax depending on the actual choice of the indexing method.
For custom indexing, a full set of Γi parameters has to be set using the --gamma switch.

! Gamma parameter: each indexing method needs some Γi parameters to be properly
defined. These values can be specified using the --gamma switch. An increasing indexing
method with Γmax = 3 is set using the --method=increasing --gamma=3 switch.

Please note that the Indexer tool assumes custom indexing if the method parameter
is not set. E.g. --gamma=3 would result in custom indexing with Γ = [3, 0, 0, 0, 0].

29

Chapter 3 N-gram Indexing

! Autoflush parameter: the --no-autoflush command line switch can be used to
disable the autoflush behaviour of the Indexer tool. If set, all index and vocabulary data
is collected in memory before it is finally written to the corresponding files on disk.
This requires more memory to complete but it ensures that no duplicate index keys are
available inside the index data.

! File id parameter: the Indexer tool assigns a numeric id to each of the given language
model files, starting at 0. In order to allow merging of index files, it is also possible to
manually define this start id using the --file-id=<start-id> switch.

The Indexer tool has been implemented using C++. The source code is freely available at
http://www.cfedermann.de/diploma under the license terms printed on page 73.

3.6 File Formats

The n-gram Indexer tool generates both n-gram indexes and (unigram) vocabularies. The
corresponding file formats are explained below:

3.6.1 Index Data Format

The index file contains character-level n-gram prefixes for unigrams, bigrams, trigrams and
n-grams of higher order. Each n-gram prefix is stored in a single line, the index keys Keyi

are separated by single blanks " ". A line within the index file contains the n-gram prefix
and the corresponding index value, separated by a ”\t” tab character. An example follows
below:

<ngram-prefix>\t<index value>

As large language models may be stored in several smaller files, the index value is extended by
a file identifer which uniquely determines the language model file for which the file position
parameter inside the index data is valid.

The full index value is of the following form:

<file position>:<file identifier>:<line count>

File identifiers are defined in a list of file names (including the full path to the file) at the
beginning of the index file:

0:<file name #1>

...

n-1:<file name #n>

30

Section 3.6 File Formats

Finally, the indexer includes the Γi parameter values when writing the index file. These values
can later be used to index n-grams and look them up in the set of index keys. Γi parameters
are placed in the first line of the index file, separated by ":". The Γ = [3, 2, 1] set would
look like this:

gamma:3:2:1

Empty or malformed lines are ignored when processing the index file. A real world example
should give a somewhat better impression of the index file format:

gamma:3:2:1:0:0

files:1

0:/home/cfedermann/diploma/language-models/europarl-v3.srilm.sorted

! 0:0:1

! ! 21:0:1

! ! ! 45:0:2

...

3.6.2 Unigram Vocabulary Format

In order to use the character-level n-gram index data in a language model, it is necessary to
know the set of unigrams which were used to generate the index. Typically, these are stored
in a list and referenced by integer values to make lookup and comparison fast and easy. The
Indexer tool allows to write out a simple vocabulary list which looks like this:

<word #1>

...

<word #n>

The vocabulary is stored one word per line, the full file contains all unigrams from all language
model files which were used for creation of the index data. If multiple files have been used
(and thus more than one entry is available inside the list of file names at the beginning of the
index file) all unigrams are written into only one vocabulary file.

Vocabulary data is usually represented using unique numerical ids. It might be a very helpful
extension to the Indexer tool if it was changed to generate these ids and to write them
out to the vocabulary file. Again, we separate word form and word id using a ”\t” tab
character.

<word #1>\t<wordid #1>

...

<word #n>\t<wordid #n>

31

Chapter 3 N-gram Indexing

3.7 Summary

As we have seen in this chapter, large n-gram corpora can be efficiently indexed using
character-level n-gram indexing. This technique has been defined based upon so called
n-gram prefixes. The basic indexing algorithm generates index data by calling an indexing
method. There are several possibilities to define these methods, we presented increasing,
decreasing, uniform as well as custom indexing. For evaluation of index data, the notions
of compression rate, large subset rate and compression gain have been defined and
applied onto SRILM language models.

32

Chapter 4

An Indexed Language Model

4.1 Motivation

As we have seen in the previous chapter, it is possible to efficiently index large language
models. In order to make use of the resulting index data, we now have to create a new
language model class inside the Moses MT decoding system. This class will be able to load
an n-gram index, the corresponding vocabulary data and will handle all n-gram requests from
within the Moses code.

This chapter will describe the design of such an indexed language model and explain the steps
which are necessary to integrate it into the Moses MT system. Once the language model is
ready, we will compare its translation quality and overall system performance to the original
SRILM language model implementation which is included in Moses.

4.2 General Design

The indexed language model is actually divided into two software layers:

On the one hand, there is the LanguageModelIndexed class which is derived from the
LanguageModel base class which is part of the Moses framework. This class provides
high-level access to the language model data from within the Moses framework.

On the other hand, we will describe the IndexedLM class which will handle all low-level
access to the raw index data. The latter has been designed to provide effective methods which
keep the former clean and easy to understand.

33

Chapter 4 An Indexed Language Model

Figure 4.1 gives an overview on the general design of the indexed language model and its
integration into the Moses MT system:



 














Figure 4.1: Design of an indexed language model

4.3 IndexedLM

We will first describe the low-level IndexedLM class and its design and implementation. The
Moses MT system assigns a numeric id to each unigram which allows to uniquely identify that
unigram. Hence the first thing our language model has to provide is some lookup structure
which handles vocabulary data.

4.3.1 Vocabulary Data

To allow fast retrieval of word ids given a unigram and vice versa, two C++ std::maps will
be used. These guarantee an amortized access time of O(log n). The unknown word is repre-
sented using the value 0, all ids id ∈ N+ represent a unique word inside the vocabulary.

The actual implementation of the IndexedLM class uses a 32bit unsigned long variable
to encode the word ids which allows a maximum of 4,294,967,294 possible unigrams in the
vocabulary which should suffice even for the largest language models we can currently work
with. Word ids and words can be queried from outside the IndexedLM class as this is
required for full integration inside the Moses MT framework.

34

Section 4.3 IndexedLM

4.3.2 Index Data

Next to the unigram vocabulary data the indexed language model has to load and handle the
n-gram index data. As we have mentioned earlier, indexing is done using n-gram prefixes.
Each index key represents a small fraction within the original, large language model file. This
subset of the language model can be explicitly determined using the file position, the line
count and the file name of the corresponding model file encoded as a numerical file id:

size in bytes 4 4 4
content file id file position # of lines

Table 4.1: Subset data for language model files

As the actual implementation of the index data structures is of significant importance, several
ideas have been designed, implemented and evaluated. We will only briefly mention the
intermediate data structures here, compare them and then describe the final implementation
in more detail.

C++ std::map with sorted model subsets

The index is defined using a C++ std::map and a custom struct ExtendedIndexData which
allows to store subset information and the corresponding n-gram data once it has become
available. As the n-gram data is volatile, only a pointer to it is stored inside the index data
for a given index key. If this pointer is NULL, the n-gram data has not yet been loaded from
disk or is not available in memory anymore. Otherwise the indexed n-grams are available in
(yet another) C++ std::map containing struct NGramData values. These encode the final
n-gram string, its conditional probability inside the language model and, if available, the
respective backoff weight.

Language model data is indexed and sorted by the Indexer tool as described in chapter 3.
All n-grams belonging to the same subset are stored in one continuous chunk of the sorted
model file. As the complete subset is loaded and stored inside a C++ std::map, the n-gram
lookup is in O(log n).

This implementation has the advantage that index lookup can be done with an amortized
access time of O(log n) as the std::map guarantees this. However there have been performance
problems when loading large index sets as the balanced tree behind the C++ std::map needed
a relatively long time to re-balance itself. Furthermore, the actual amount of required memory
was also unsatisfying.

35

Chapter 4 An Indexed Language Model

Custom index tree with sorted model subsets

Due to the aforementioned problems with the std::map implementation, a custom index tree
class has been designed and implemented. Effectively, this index tree stores all possible paths
between all possible subsets within the language model. Each of those subsets is dependent on
the parameters Γi of the n-gram prefixing algorithm and uniquely identified using prefix ids.
Each of the nodes represents the subset information of the traversed prefix up to the respective
depth of the tree.

As in the C++ std::map implementation, language model data is indexed and processed in
sorted text form. Again, the n-gram lookup time is in O(log n).

The tree implementation allows faster traversal and lookup of index entries and requires less
memory than the C++ std::map. Due to the tree structure, the index lookup time is also
in O(log n).

Custom index tree with sorted binary model subsets

The creation of a custom index tree class improved overall system performance, yet subset
loading and decoding the n-gram data was still a bottleneck. To speed up subset loading
from hard disk, we changed the implementation of the Indexer tool to produce binary output
following a simple binary format specification:

size in bytes 4 4 ∗ α 8 8
content n-gram size α n-gram ids cp 1 bow 2

Table 4.2: Binary format for language model files

The usage of binary data allows easier subset lookup as it enables us to load the whole
subset data in one single read operation. Afterwards, decoding the n-gram data can be
performed faster as its format is fixed, costly std::string::find() calls are not necessary
anymore.

Problems arose with respect to the double precision, each and every probability was a little
bit different from the original value. Another update to the Indexer tool which encoded these
probabilities using 16 bytes instead of just 8 bytes helped getting rid of the precision problems,
yet the file size of the binary language model file nearly doubled.

1conditional probability
2backoff weight

36

Section 4.3 IndexedLM

Custom index tree with serialized binary tree models

As the binary model subsets did not achieve significant performance improvements, a further
refinement of the Indexer tool was added. Instead of just writing out binary n-gram data for
each of the indexed subsets, the subset data was collected from the original model file and
then transformed into an n-gram tree in memory. In the final step of the index generation,
we replaced the output of binary n-gram data lines by serialization of the n-gram trees to
hard disk.

size in bytes 4 (4 + 8 + 8 + 4) ∗ α

content # of children α child id cp bow next ptr

Table 4.3: Binary tree format for language model files

Serialization was realized in such a way that all word ids of the same depth inside the tree
were written to file in order and with correctly computed next ptrs to their children nodes.
The n-gram trees could then be loaded from hard disk in a single read operation and efficiently
be traversed using a quick search approach in O(log n).

In theory, this method should have the best properties and performance for our indexed
language model as this implementation would allow us the determine full n-gram scores with
a single tree traversal, similar to the SRILM implementation.

However, the necessary changes to the Indexer tool greatly decreased its performance while
heavily increasing the memory requirements. The actual n-gram lookup performance from
hard disk was also not as good as previously expected and the problems with binary precision
which we already observed for sorted binary model subsets persisted.

Next to these shortcomings, the approach did also increase the overall complexity of the
indexed language model implementation. Hence we decided to drop the idea of serialized
binary tree models.

37

Chapter 4 An Indexed Language Model

4.3.3 Comparison of the Different Index Data Structures

Let us now briefly compare the different possibilities to store and access index data. Memory
refers to the amount of RAM which is needed for operation, speed describes the decoding
performance and disk represents the size of the respective model file on hard disk. As the
overall lookup times should all be in O(log n), these three columns provide a more meaningful
way to compare the listed approaches:

data structure index lookup time n-gram lookup time memory speed disk
std::map O(log n) O(log n) − + +
slow construction for large index sets, relatively high memory usage

Table 4.4: C++ std::map index data structure

data structure index lookup time n-gram lookup time memory speed disk
Index tree O(log n) O(log n) + − +
performs better than C++ std::map, subset loading slow

Table 4.5: Custom index tree index data structure

data structure index lookup time n-gram lookup time memory speed disk
Index tree O(log n) O(log n) + + −
improves subset loading speed, but has double precision problems

Table 4.6: Index tree with binary model index data structure

data structure index lookup time n-gram lookup time memory speed disk
Index tree O(log n) O(log n) + ++ −−
best lookup performance, worst indexing performance

Table 4.7: Index tree with binary tree model index data structure

4.3.4 Final Implementation

Empirical tests have shown that the custom index tree shown in table 4.5 performs best.
As the usage of binary n-gram data makes the indexing process a lot more complex and
lookup speed is only minimally improved, we have decided to keep standard sorted language
model files as described in chapter 3. This also allows manual post-editing as these model
files are still human-readable.

38

Section 4.3 IndexedLM

4.3.5 N-gram Cache

The IndexedLM class features an n-gram cache which is designed to minimize hard disk
access times. Whenever a request is handled, the resulting conditional probability and backoff
weight for the given n-gram are stored in a so-called n-gram cache. Subsequent requests for
the same n-gram will be looked up from the n-gram cache instead of being loaded from hard
disk. The data will remain inside this cache until it is cleared, for example after a complete
sentence has been processed.

The following figure gives an idea how the indexed language model, the index and vocabulary
files and the n-gram cache interact. After the IndexedLM object has been instantiated, it
loads both the index data using loadIndex() and the vocabulary using loadVocab(). Only
the index information is loaded and n-gram data is handled on demand. Once the data inside
the n-gram cache is not needed anymore, the cache can be cleared using clearCache().



 


















Figure 4.2: IndexedLM cache overview

39

Chapter 4 An Indexed Language Model

4.3.6 N-gram Retrieval

After the IndexedLM object has been created, it allows to lookup conditional probabilities
and backoff weights for any given n-gram. The correct index key for any given n-gram can
be determined using the model gammas parameters. Using this information, it is possible to
retrieve the n-gram in the language model if it is available.

Typically if a given n-gram w1w2...wn cannot be found inside the language model data, the
language model tries to backoff to a smaller n-gram w2w3...wn to approximate the probability
of the full n-gram. The indexed language model was designed to be compatible to the lookup
algorithm in the original SRILM language model implementation.

However, while the original SRILM model is tree based and can do the n-gram lookup by
traversing this tree, the indexed language model is only partially available in memory and can
only lookup single n-grams. Therefore it has to emulate the SRILM behaviour performing
multiple calls to loadNgram(). Furthermore it is not possible to keep a pointer to the maximal
n-gram retrieved, the Moses concept of an n-gram State will be omitted.

4.3.7 Retrieval Algorithm

The following pseudo code illustrates how the indexed language model tries to lookup a given
n-gram inside the language model. The algorithm is the main connection between the low-
level IndexedLM object and the high-level LanguageModelIndexed object. It has been
implemented in the getNgramScore() method:

Algorithm 2 retrieve largest n-gram inside the language model
Require: n-gram w1w2...wn

1: current-ngram ← n-gram, α ← 1
2: result ← {probability = 0, backoff-weight = 0}
3: while current-ngram not found and n > 0 do
4: current-ngram ← wαwα+1...wn

5: α ← α− 1
6: end while
7: result.probability ← PROB(current-ngram)
8: if order(current-ngram) < order(n-gram) then
9: result.backoff-weight ← COMPUTE-BACKOFF

10: end if
11: return result

40

Section 4.3 IndexedLM

The algorithm gets an n-gram and tries to look it up in the language model file. If the full
n-gram is not available in the model file, the algorithm gradually reduces the n-gram size and
tries to look up the smaller n-grams. Once an n-gram has been found and it is not the full
n-gram, the backoff weight is determined using COMPUTE-BACKOFF. The inner details of
this algorithm will be shown below, (⊕ denotes string concatenation).

Algorithm 3 retrieve backoff weight for a given n-gram and context position α
Require: n-gram w1w2...wn, 1 ≤ α < n
1: backoff-weight ← 0
2: current-ngram ← wα

3: while current-ngram found and α > 0 do
4: backoff-weight += BOW(current-ngram)
5: current-ngram ← wα−1 ⊕ current− ngram
6: α ← α− 1
7: end while
8: return backoff-weight

The backoff weight is determined by searching for the longest n-gram prefix which is available
in the language model. For each of the increasingly larger prefixes which is found during the
search the corresponding backoff weight is retrieved and accumulated.

A short example will help to illustrate n-gram retrieval. Assume we are given the n-gram
”<s> the house </s>” and the following logarithmic language model probabilities:

probability n-gram backoff-weight
−∞ <s> −1.444851
−3.786017 <s> small −0.1383325
−4.330768 </s>

−0.8830299 <s> the −0.5427635
−2.439504 <s> the house −0.1765614
−4.24368 house −0.2198115
−2.468234 house this 0
−3.485961 small −0.389709
−1.934778 the −0.7377257
−2.707532 the house −0.3511544
−2.460786 this −0.5616246

Table 4.8: N-gram retrieval example, all scores in log10 format

The largest connected n-gram contained within language model is ”</s>”. Hence the basic
logarithmic conditional probability is −4.330768.

41

Chapter 4 An Indexed Language Model

Now we will compute the backoff weight: the token ”house” is our first approximation. It can
be found within the language model and so we memorize its backoff weight, −0.2198115.

We then try to gradually increase the n-gram prefix from ”house” to ”the house” and finally
to ”<s> the house”. As all these prefixes exist, we also keep their backoff weights, namely
−0.3511544 and −0.1765614.

In the end, we get a logarithmic conditional probability of −5.078295:

n-gram probability backoff-weight Σ
</s> −4.330768 −4.330768
house −0.2198115 −4.5505795
the house −0.3511544 −4.9017339
<s> the house −0.1765614 −5.0782953

Table 4.9: N-gram probability construction, all scores in log10 format

If we were given the n-gram ”my house” instead, this would give a final logarithmic probability
of just −4.24368 as the word ”my” is not contained within the language model which makes
it impossible to add anymore backoff weight.

4.4 LanguageModelIndexed

Now we will briefly introduce the high-level LanguageModelIndexed class. This class
connects the IndexedLM class with the Moses MT system. It has been derived from the
LanguageModelSingleFactor base class and provides methods to lookup word ids given a
string and to compute n-gram probabilites.

4.4.1 Interaction with IndexedLM

The volatile cache inside IndexedLM is cleared (using clearCache()) after a single sen-
tence has been processed. In order to construct an own vocabulary map for Language-
ModelIndexed, the class directly accesses the low-level vocabulary std::map provided by
IndexedLM. This is necessary as the Moses MT system has to know word ids for the vo-
cabulary it processes, otherwise translation would not rely on the language model anymore
and be simplified to phrase-table transfer. Actual n-gram probabilities and backoff weights
are computed using the getNgramScore() method.

42

Section 4.4 LanguageModelIndexed

The following figure illustrates the relations and interactions between high-level class Lan-
guageModelIndexed and its low-level counterpart IndexedLM:





 








Figure 4.3: Interactions between LanguageModelIndexed and IndexedLM

4.4.2 Interaction with Moses

The LanguageModelIndexed class implements the LanguageModelSingleFactor inter-
face defined in the Moses MT framework. It provides full compatibility to the Language-
ModelSRI class provided the same base SRILM model file is used.

Figure 4.4 gives an overview on the dependencies between the Moses framework and the
high-level LanguageModelIndexed class:











Figure 4.4: Interactions between Moses and LanguageModelIndexed

43

Chapter 4 An Indexed Language Model

4.4.3 Moses Integration

To integrate the indexed language model code into the Moses MT system the following changes
and additions had to be done:

file name status description

configure.in modified added conditional which allows to switch on/off IndexedLM support

LanguageModelFactory.cpp modified added actual construction of IndexedLM objects

Makefile.am modified added IndexedLM, IndexTree and NGramTree files to list of object files

Parameter.cpp modified changes to allow loading of IndexedLM files

TypeDef.h modified added IndexedLM to the list of available language models

Table 4.10: Changes to the Moses framework

file name status description

LanguageModelIndexed.cpp added code which connects Moses and IndexedLM

LanguageModelIndexed.h added

indexedlm.cpp added implementation of the IndexedLM class

indexedlm.h added

indextree.cpp added implementation of the IndexTree class

indextree.h added

ngramtree.cpp added implementation of the NGramTree class

ngramtree.h added

Table 4.11: Additions to the Moses framework

4.5 Comparison to the SRILM Model

The indexed language model has been designed and implemented with full compatibility to
the original SRILM implementation in mind. The getNgramScore() method emulates the
tree traversal inside SRILM and generates both the same n-gram scores and backoff weights.
This allows to use the indexed language model as a drop-in replacement for any given SRI
language model.

4.5.1 Performance

When evaluating the performance of the indexed language model, it is important to think
about the differences between memory and hard disk access. While the first is measured in
nano seconds (ns), the latter is performed in micro seconds (µs), there is a difference of three
orders of magnitude. Hence there is an implicit performance loss whenever loading from hard
disk is involved.

Let us now briefly reconsider why the indexed language model has been designed and imple-
mented. Large amounts of computer memory are still reasonably expensive yet they would

44

Section 4.6 IndexedLM vs. SRILM

be required to make use of large language models inside the Moses MT framework. As large
language models can help to create better and stylistically more satisfying translations it
makes sense to use them but the costs for upgrading RAM can be a difficult obstacle.

Now the indexed language model provides an implementation which allows to actually use
those large language models without the need to provide more computer memory. The down-
side lies in the fact that translations will take longer when performed using the indexed
language model which is due to the slower hard disk access times.

4.6 IndexedLM vs. SRILM

We will compare the processing time, memory usage and BLEU scores of several language
models on the following pages. The models have been evaluated using a small test set of 10
sentences drawn from the Europarl corpus. We chose this number of sentences as it represents
a common choice for real life experiments.

The language models have been generated from Europarl data and the second release of the
LDC 3 Gigaword corpus. The respective model files differ in size and n-gram order as shown
in the following table:

language model SRI file size index file size n-gram order
en-3gram 90 MB 14 MB 3
en-4gram 145 MB 13 MB 4
en-5gram 185 MB 13 MB 5
cna eng 183 MB 17 MB 5
europarl-v3 324 MB 19 MB 5
xin eng 2.3 GB 85 MB 5
afp eng 2.4 GB 125 MB 5
nyt eng 3.6 GB 211 MB 5
apw eng 6.0 GB 193 MB 5

Table 4.12: Overview of all evaluation language models

3Linguistic Data Consortium

45

Chapter 4 An Indexed Language Model
language

m
odel

startup
tim

e
[s

]
processing

tim
e

[s
]

processing
tim

e
/

sentence
[s

]
m

em
ory

usage
[M

B
]

B
LE

U
score

en-3gram
.srilm

34
10

1.0
0.9

G
B

21.13

en-4gram
.srilm

37
11

1.1
1.0

G
B

19.25

en-5gram
.srilm

37
11

1.1
1.0

G
B

19.80

cna
eng.srilm

47
14

1.4
1.0

G
B

16.87

europarl-v3.srilm
61

11
1.1

1.2
G

B
20.46

xin
eng.srilm

255
12

1.2
3.7

G
B

17.33

afp
eng.srilm

272
13

1.3
5.0

G
B

17.87

nyt
eng.srilm

398
17

1.7
4.5

G
B

15.20

apw
eng.srilm

614
18

1.8
8.1

G
B

15.58

Table
4.13:

SR
I

language
m

odelperform
ance

w
ithin

the
M

oses
M

T
fram

ew
ork

language
m

odel
startup

tim
e

[s
]

processing
tim

e
[s

]
processing

tim
e

/
sentence

[s
]

m
em

ory
usage

[M
B

]
B

LE
U

score

en-3gram
.index

162
276

27.6
0.9

G
B

21.99

en-4gram
.index

244
289

28.9
1.0

G
B

18.95

en-5gram
.index

253
293

29.3
1.0

G
B

20.04

cna
eng.index

263
277

27.7
1.0

G
B

16.85

europarl-v3.index
312

224
22.4

1.0
G

B
20.17

xin
eng.index

319
282

28.2
1.4

G
B

17.19

afp
eng.index

351
256

25.6
1.5

G
B

17.37

nyt
eng.index

420
317

31.7
1.8

G
B

15.21

apw
eng.index

513
322

32.2
2.0G

B
15.62

Table
4.14:

Indexed
language

m
odelperform

ance
w

ithin
the

M
oses

M
T

fram
ew

ork

46

Section 4.7 Summary

4.7 Summary

In this chapter, we have shown how an efficient indexed language model can be designed
and implemented. We decided to use a tree-based index data structure and look up n-gram
probabilities from sorted model files which are stored in ASCII format. For evaluation, pro-
cessing time, memory usage and BLEU scores have been determined. Overall, the indexed
language models performed slower than the corresponding SRI models, however they re-
quired less memory. The actual performance of the indexed language models depends on
the selection of the respective indexing parameters Γ.

47

Chapter 4 An Indexed Language Model

48

Chapter 5

A Standalone Language Model Server

5.1 Motivation

The current Moses decoder has a simple yet disturbing drawback. Every time the decoder is
started it loads the language model data from disk and processes the phrase-table data. Even
if the same language model is used to translate a set of documents there exists no possibility
to keep the language model data available in memory. As experimentation with machine
translation often involves only little changes of the scoring weights while the actual language
model file remains unchanged, this clearly is a drawback of the current implementation.

A new approach can help to improve this situation. It is possible to create a dedicated
language model server which loads a given language model when started and makes the n-
gram data contained within the language model available via shared memory or using network
communication. This chapter will describe the implementation of such a language model
server and will also present a new language model class inside the Moses framework which
connects the Moses decoder to the new language model server.

5.1.1 Further Applications

The language model server can also be used from within other applications. This is possible
due to a flexible and extendable protocol which can be used to remotely control the language
model server. It is hence possible to use language models in new ways and different application
fields which makes the whole idea interesting for several research projects. For example, one
might think of a natural language generator which rates its output using the language model
server discarding any text which does not get a certain score from the language model.

49

Chapter 5 A Standalone Language Model Server

5.2 General Design

The Moses framework defines its language model classes using multiple class inheritance. As
implementations for several language model types such as SRI or IRST models already exist
within the Moses code base, we have designed the language model server to build upon these
foundations. Hence we can support all language model types supported by Moses out of the
box. Furthermore, we could also integrate the indexed language model developed in chapter 4
with only little effort.

To allow easy integration of the language model server into existing or new applications, a
simple, text-based protocol will be developed. N-gram data can be queried using either TCP
networking or shared memory IPC methods. This guarantees fast and portable access to the
language model data.

The following figure illustrates the general design of the language model server:

,-.-


 /01-2

345

6670-

,-0895

:;-681

8-65<


=>5

8?:@=:?044<05<

Figure 5.1: Design of a language model server

50

Section 5.3 Server Modes

5.3 Server Modes

As we have mentioned above the server supports TCP and IPC communication. It can either
be started in pure TCP or IPC mode, additionally there exists supports for a mixed mode
which allows both TCP and IPC queries. The language model server handles access from
multiple clients at the same time.

5.4 TCP Server

5.4.1 Advantages

The TCP server creates a new listen socket at a given port once it has been started. All
incoming connection requests are monitored and handled according to the commands defined
in the server protocol. As TCP communication itself is operating system independent, this
server mode provides a very flexible way to share language model data within a network.
Even shell scripts can easily send requests to the server.

Next to this flexibility, the usage of TCP also allows to process queries from multiple clients
at the same time. Depending on the actual language model implementation, this can greatly
improve the performance of the server. However, to make use of this feature, it is mandatory
to check whether the language model can be used in parallel to handle several requests.

Finally the TCP protocol guarantees reliable, in-order processing of client queries.

5.4.2 Disadvantages

Processing speed can become the main problem of the TCP server. In fact all data sent to
the server has to be transformed into TCP packets. This adds a memory overhead and also
takes some time to finish. Furthermore, requests originating from distant machines will need
a certain time to be routed to the language model server.

Also TCP packet size is limited and hence huge vocabularies will create a certain amount of
congestion when queried. This could be circumvented by sharing vocabulary data with the
clients as the vocabulary download could be omitted then. Standard requests to the language
model server will most likely never get split into several TCP packets.

51

Chapter 5 A Standalone Language Model Server

5.4.3 Overview

In practice the aforementioend shortcomings of the TCP server have not become an issue as
the advantages prevail and reliable access from large networks or the internet represents a
valuable extension to language modeling.

The approach has the general advantage that only little configuration data is needed on the
client side, all other data is exchange at processing time. The following figure shows how the
TCP server mode works:

"#$"

"%&'(#)*+,$-./,01,2"

"%&'(#)*+,$-.

"3&

"%&'4)4"-.

(#)*+,'$,01,2"-.

/,21+"

2(1"*35)6

"%&',74"-.

$,%8-.

2,)*-.

Figure 5.2: Flow chart of the TCP server mode

52

Section 5.5 IPC Server

5.5 IPC Server

5.5.1 Advantages

In order to speed up communication in situations where both the client and the server reside
on the same machine, the IPC server mode allows to query the language model server using
a shared memory approach. Instead of opening a port this mode creates two shared memory
areas, one for requests, one to write back results. The shared memory areas are generated
using a numeric seed value which helps to create unique identifiers for them. Access to the
request and result memory is managed using a semaphore which locks the resources once a
read/write operation is initiated.

It is possible to create a large result area which even allows to write back a huge vocabulary in
a single step. This is a clear advantage over the TCP server mode which is constricted by the
maximum TCP packet size. Another, even more important, advantage lies in the pure speed
of the IPC approach: there is no transformation into packets needed, there is no overhead
but requests can be processed very quickly as only local memory access is involved.

Due to the utilization of semaphore locking, we can guarantee reliable, in-order processing of
client requests.

5.5.2 Disadvantages

The IPC server is dependent on the Linux/Sys V shared memory implementation and hence
not easily portable to different operating system architectures (e.g. Windows). Here we can
observe a clear advantage of the TCP server mode which is portable to any operating system
which operates a TCP stack, including exotic systems like Haiku or SkyOS.

Furthermore, the semaphore locking forces our language model server to process client re-
quests sequentially. It is not possible to allow parallel queries from multiple clients. However,
as access to the language model server should be quite fast when using the IPC server mode
this does not have a serious impact on overall system performance.

53

Chapter 5 A Standalone Language Model Server

Figure 5.3 illustrates the IPC server mode:



+,-./0-12-3

+,-./

4

./

+,--12-3./

0-32,

32+456

-7./

8-89./

8-89./

Figure 5.3: Flow chart of the IPC server mode

54

Section 5.6 Server Mode Comparison

5.6 Server Mode Comparison

To finish the inspection of the different server modes we provide a tabular summary of their
respective features. This compares whether the mode supports sequential or parallel access to
the language model, it lists possible limitations concerning memory and rates the processing
speed. Finally the code portability is indicated.

server mode sequential / parallel access memory limitations processing speed portable
TCP yes / yes TCP packet size fast yes
IPC yes / no no very fast no
MIXED yes / yes TCP packet size fast no

Table 5.1: Comparison of language model server modes

5.7 Protocol

To remotely control the server a simple, text-based communication protocol has been de-
signed. This protocol allows to query n-gram scores from the language model and also makes
the vocabulary data available to the clients. Queries are composed of pre-defined keywords
and n-gram data. N-grams can be specified using the actual word forms or the corresponding
word ids. Results are returned in text form and have to be post-processed by the respective
application.

5.7.1 Request Format

Requests to the server are composed of a unique command code and a set of arguments,
if applicable. Multiple arguments should be separated by blank spaces " ". This results in
the following format:

<command>:<argument #1> <argument #2> ... <argument #n>

5.7.2 Result Format

After a client request has been processed by the language model server, it returns some result
to the client. Regardless of the actual type of the result it is returned as text data. The
clients have to post-process result data according to the protocol specifications themselves
after receiving a result from the server.

55

Chapter 5 A Standalone Language Model Server

5.7.3 Protocol Commands

The following table lists all protocol commands which are currently implemented in the lan-
guage model server code base. It lists the respective arguments and results and specifies the
type of the result. A detailed description of the commands follows below the table.

command code arguments result result type
SHUTDOWN none "SHUTDOWN" string
TYPE none "SRILM", "INDEXEDLM" string
MODE none "TCP", "IPC", "MIXED" string
GETID word $WORD ID integer
GETWORD word id $WORD string
GETVOCAB none $VOCAB DATA string
UNKNOWNID none $WORD ID integer
NGRAM words $SCORE float
SCORE word ids $SCORE float

Table 5.2: Protocol commands for the language model server

5.7.4 Description

We will now describe the required parameters and actual effect of the protocol commands.
Whenever no information regarding arguments is given, the respective command does not
support/require arguments.

! SHUTDOWN: this command tells the server to close all open connections and exit
the server loop. Afterwards no connections to this server instance are possible anymore
and the server process quits. Any resources used by the server are freed and can be
re-used at once. This is especially important for the port used in TCP server mode.

! TYPE: sending the TYPE command to the server returns the type of the language
model to the client computer. At the moment, only SRI and Indexed language models
are supported, so either "SRILM" or "INDEXEDLM" is returned. Later revisions of the
language model server may allow additional language model types, the TYPE command
would then be updated accordingly.

! MODE: each instance of the language model server is configured for one of the three
possible server modes. The MODE command returns "TCP", "IPC" or "MIXED" with
respect to the current server configuration.

56

Section 5.7 Protocol

! GETID 〈word〉: this command can be used to query the vocabulary id for the word
specified in the argument parameter 〈word〉. As we have already described in previous
chapters, words are internally represented using unique numeric identifiers, i.e. integers.
If 〈word〉 is contained within the vocabulary, the corresponding word id is returned,
otherwise the unknown id is returned.

! GETWORD 〈word id〉: given a numeric word id, this command returns the corre-
sponding word contained within the vocabulary. If 〈word id〉 can not be found the
empty string "" is returned.

! GETVOCAB: the GETVOCAB command tells the server to send a list of all words
contained within the vocabulary. Additionally it returns the corresponding word ids for
each of these words. The list is formatted like this:

<id #1>=<word #1>:<id #2>=<word #2>: ... :<id #n>=<word #n>

It is worth noting that this command generates a lot of data which can result in network
congestion or runtime delays. For IPC connections, larger shared memory areas can help
to overcome this problem.

! UNKNOWNID: it is clear that no vocabulary can ever contain every possible word. In
fact it is very likely to find unknown words when working with real life data. Internally,
these unknown words are represented using a special, designated id for the unknown
word. This id can be queried by the client using the UNKNOWNID command. Usually,
the unknown word corresponds to 0.

! NGRAM 〈words〉: the central task of a language model is to rate or weight n-grams
according to their likeliness in natural language. Of course, this should also be the
central operation for our language model server. Every client can send n-grams using
the NGRAM command. Here, the n-gram data is specified in text form, i.e. word after
word. The language model server will then convert the n-gram into word ids, send them
through the language model and return the resulting score to the client. If the n-gram
is not contained within the language model, the largest n-gram and backoff weight are
determined. In case of errors, the empty string "" is returned.

An example request will help to illustrate usage of the NGRAM command:

"NGRAM:this is a test"

If this request would be sent to an active language model server, the server would try
to look up the n-gram "this is a test" inside the language model data.

57

Chapter 5 A Standalone Language Model Server

! SCORE 〈word ids〉: it is also possible to query an n-gram score based on word ids
instead of the actual words. This can be done using the SCORE command. Apart
from the different arguments this command and its result are identical to the NGRAM
command described above.

5.8 LanguageModelRemote

In order to integrate the language model server into the Moses MT framework, we have
extended the Moses code base with a new LanguageModelRemote class. This class loads
a configuration file which specifies the port, mode and type of an active language model server.
Afterwards it establishes a connection to this language model server, either via TCP or using
IPC methods, and loads the vocabulary data using the GETVOCAB command.

The LanguageModelRemote class behaves exactly as any other language model class would
do, the only difference lies in the fact that actual language model operations are performed by
a language model which is not available on the local machine but on a remote server.

5.8.1 Interaction with Moses

The LanguageModelRemote class implements the LanguageModelSingleFactor inter-
face defined in the Moses MT framework. It maps all requests to the language model to
requests which are sent to a language model server.

Figure 5.4 gives an overview on the dependencies between the Moses framework and the
high-level LanguageModelRemote class:



,-./.0123

4351/6743,8967

1-./.01:

;<=>8=<?/-@?3@-

Figure 5.4: Interactions between Moses and LanguageModelRemote

58

Section 5.9 Comparison to the SRILM Model

5.8.2 Moses Integration

To integrate the remote language model code into the Moses MT system the following changes
and additions had to be done:

file name status description

configure.in modified added conditional which allows to switch on/off RemoteLM support

LanguageModelFactory.cpp modified added actual construction of RemoteLM objects

Makefile.am modified added RemoteLM files to list of object files

Parameter.cpp modified changes to allow loading of RemoteLM files

TypeDef.h modified added RemoteLM to the list of available language models

Table 5.3: Changes to the Moses framework

file name status description

LanguageModelRemote.cpp added code which connects Moses and the language model server

LanguageModelRemote.h added

Table 5.4: Additions to the Moses framework

5.9 Comparison to the SRILM Model

As the language model server itself does not perform any language model computations but
rather utilize existing language model classes from the Moses MT framework, we can guarantee
that all scores and backoff weights returned by the language model server are identical to those
generated by the original models.

5.9.1 Performance

The overall system performance depends on the server mode. While IPC connections are very
fast, TCP connections may become slow depending on the distance between server and client
within the network. Effectively, the language model server eliminates the need to instantiate
a complete language model each time the Moses decoder is started. Instead only a connection
to the (already running) language model server is established and used to perform language
model computations.

5.9.2 Limitations

The main problem with the Moses MT framework is the missing support of batched calls to
the language model methods. Each and every interaction with the language model results in
a single call to the model. For our remote language model this generates a lot of single calls

59

Chapter 5 A Standalone Language Model Server

which have to be transmitted over TCP or IPC. Even if all those single calls can be processed
very quickly on the server side, the accumulated transmission time slows down the overall
performance of the remote language model.

If the Moses decoder would instead support batched calls, i.e. collective processing of a certain
number of calls to the language model, the transmission delay would decrease which would
result in an improved system performance.

5.10 Summary

In this chapter, we have described the design and implementation of a standalone language
model server which allows to share language model data over a network or on a single
machine. The server supports TCP connections and IPC shared memory methods which
makes the language model server fast, flexible and portable.

Furthermore we developed a remote language model class which allows to connect the
Moses decoder to a shared language model server, all internal method calls are mapped to
remote requests. The server is built upon the language model foundations of the Moses MT
framework and hence supports all Moses language model types. Scores and backoff
weights are fully compatible to the original language models.

It is also possible to make use of the language model data in completely new applications as
the server can be remotely controlled using a simple protocol.

60

Chapter 6

A Google 5-gram Language Model

6.1 Motivation

In the previous chapters, we have designed and developed the means to handle very large
language models inside the Moses MT framework. We have defined several indexing methods
which enable the Indexer tool to create an indexed language model out of a large language
model in SRI format. This indexed language model can then be loaded by the Moses decoder
and be used to translate texts.

We now want to create such a large language model and evaluate its performance. In order
to create the indexed language model, we first have to create a standard SRI model out of
a large corpus. While the LDC Gigaword corpora are already pretty large, there exists an
even larger corpus, the Google 5-gram corpus. This chapter will describe the steps taken
to create an indexed language model from this corpus.

6.2 Google 5-gram Corpus

Google released a huge collection of English n-gram data in August 2006. This data
contains billions of n-gram types (based on a trillion of running words) up to a
maximum n-gram order of 5 and has been collected from public web pages in early 2006. It
has later been made available by the Linguistics Data Consortium as a set of 6 DVDs. All
together, the compressed n-gram data is about 24 GB in size, the uncompressed version takes
more than 90 GB of space.

61

Chapter 6 A Google 5-gram Language Model

The n-gram counts for the Google 5-gram corpus are shown in the following table:

number of count

tokens 1,024,908,267,229

sentences 95,119,665,584

unigrams 13,588,391

bigrams 314,843,401

trigrams 977,069,902

fourgrams 1,313,818,354

fivegrams 1,176,470,663

Table 6.1: Google 5-gram corpus counts

The Google corpus contains large lists of n-grams each single one annotated with its frequency
relative to the total number of tokens. Both tokens and n-grams have been post-processed
and a frequency cutoff has been applied. For more detailed information, please refer to the
respective readme.txt 1 file.

6.3 Corpus Preparation

To prepare the Google corpus data to be used for a large language model, all n-gram data
was first converted to lowercase and then sorted lexicographically. In order to keep the file
size of the n-gram data files on a manageable level, we decided to create separate files for
each of the different n-gram orders.

6.4 Language Model Generation

Before we can actually invoke the Indexer tool to create an indexed language model for the
Google corpus, we have to create a language model in SRI format. Usually, we would use the
ngram-count tool for this but the sheer amount of n-gram data already lets us doubt whether
it can be used for this specific task.

Several attempts to compile a complete Google SRILM failed when ngram-count was used,
even the special script make-big-lm which is dedicated to create large language models in a
more memory efficient manner did not help to overcome these problems. The SRILM toolkit
seemed to have severe problems with interpolation and smoothing of n-gram counts, hence

1http://www.ldc.upenn.edu/Catalog/docs/LDC2006T13/readme.txt

62

Section 6.5 Indexing

after some time of trial and error, we had to discard our initial plan to create the Google SRI
language model file using the SRILM toolkit.

In fact, we decided to skip all interpolation and smoothing efforts for our new language model
and simply used the given frequency counts to determine the corresponding conditional prob-
ability values for the n-grams. This approach does not support n-gram backoff anymore and
could be compared to a large n-gram memory instead of a full-fledged language model. How-
ever as the complete Google 5-gram corpus is a lot larger than any language model currently
known, we considered this worth a try. Current work also suggests a reduced importance of
full interpolation and smoothing for very large language models. [Brants et al., 2007]

The final Google language model in SRI format was about 100 GB in size.

6.5 Indexing

After the creation of this basic lookup model in SRI format was finished, we used the Indexer
tool to build an indexed version of the Google language model. In order to keep the index
size small, we decided to use the following set of Γi parameters:

ΓGoogleLM = {3, 2, 1, 0, 0} (6.1)

As we had already seen in chapter 3, indexing up to the third word of the n-gram suffices even
for n-grams of higher order. Hence we limited the Γi parameters to only three values.

To prevent memory issues when indexing the Google data, we split up the complete 40 GB
file into several smaller files which could still be handled by the Indexer tool and would still
fit into the 32 GB of the development machine. This was possible as the Indexer tool allows
to customize the file ids it assigns to the different language model files. For more information
on this, please refer to the Indexer tool documentation on page 29.

After the respective parts of the Google data had been indexed, the resulting index data
and vocabulary files were merged to create a single index data file for the complete Google
language model. Merging the index data files was done by a merging script which combined
n-gram subsets for index keys which appeared in multiple index data files. The final index
file still contained references to several n-gram files but after the merging process had been
completed it was guaranteed that each and every index key referenced only to a single file
containing n-gram data.

The full index data file was about 5.6 GB in size, the vocabulary about 0.1 GB.

63

Chapter 6 A Google 5-gram Language Model

6.6 Index Merging

The merging algorithm pseudo code is shown below. The algorithm requires a set of n index
data files (represented by IDX1, ..., IDXn) which contain index keys generated using the
same set of Γi parameters. It is not possible to join index data files which were created using
different Γi sets. If an index key exists in more than one index data file, the corresponding
n-gram data subsets will be merged into a single n-gram subset. All output is written to a
new index data file which is represented by the INDEX variable.

Algorithm 4 index data files merging
Require: index data files IDX1, ..., IDXn, index output file INDEX
1: combined-keys = ∅
2: for i = 1 TO n do
3: while ∃ some key in IDXi, key /∈ combined-keys do
4: current-key ← IDXi

5: combined-keys = combined-keys ∪ current-key
6: INDEX ← COMBINE(current-key, IDX1, ..., IDXn)
7: end while
8: end for
9: return index

The pseudo-code does the following:

! line 1 initializes the combined−keys set which stores all index keys which have already
been processed. If such a key is encountered a second time while the algorithm is
running, it will be ignored.

! line 2-8 represents the outer loop which iterates over all possible index data files.

! line 3-7 represents the inner loop which iterates over all possible index keys within
a single index data file. Please note that an index key is only processed if it is not
contained within combined− keys.

! line 4 reads an unknown index key from the index data file.

! line 5 adds the current index key to the set of already processed keys combined−keys.

! line 6 finally combines all n-gram data bound to the current index key. The COMBINE

operation checks all index data files and generates a new n-gram data file if the current−
key occurs multiple times.

64

Section 6.7 Evaluation

6.7 Evaluation

When trying to evaluate the GoogleLM we quickly reached the limits of our workstation
and the indexed language model developed in chapter 4. The current implementation of the
indexed language model and its integration into the Moses MT framework are robust and
well-tested, yet they should still be considered being in prototype stage.

As the index data for our Google language model is already as large as the biggest SRI
language model which we used for evaluation in chapter 4 it is clear that huge amounts
of computer memory and a long decoding runtime are needed to actually use this data for
statistical machine translation. Additionally, a large amount of hard disk space is required
to store the sorted model files.

By design, the Moses MT system creates translations using a translation and a language
model. In this thesis, we have investigated and developed methods to allow very large language
models to be used with the Moses decoder. Effectively, we have increased the amount of
information which is available via the language model part of the decoding system. The
translation model and its internal phrase-table handling have been treated as a black box and
were used without modification.

Several experiments with the GoogleLM data revealed a serious problem with this design of
the Moses decoder, a problem which actually hinders the usage of very large language models.
As the decoder treats all tokens which are not contained within the phrase-table as unknown
words, it is not able to access the amount of additional information which is contained in our
large language model. Hence the usage of the Google language model did not help to improve
the overall translation quality. The only effect we observed was a slower performance of the
Moses decoder.

Because of this unsatisfying intermediate results and due to the enormous amounts of hard
disk and computing power which would have been required to evaluate the Google language
model in detail we decided not to invest further efforts as long as they would not show any
measurable impact on the translation quality.

Therefore we cannot observe an improved translation quality for the very large Google lan-
guage model. While an updated and more refined version of the indexed language model
would help to reduce the overall performance loss, it would still not be able to resolve the
problems with the translation model and its phrase-table.

More research on a better interaction between translation and language models seems to be
an interesting and important effort as it could help to utilize the huge amount of language
model data provided by large corpora such as the Google 5-gram corpus.

65

Chapter 6 A Google 5-gram Language Model

6.8 Summary

In this chapter, we have described how we created an indexed Google language model
from the Google 5-gram corpus released in 2006. As the sheer amount of n-gram data made it
impossible to directly use the SRILM toolkit, we decided to create a n-gram lookup
model without any smoothing or interpolation applied to the n-gram data. This approach
was also supported by current research results.

Index data was created in several steps, the intermediate index files were then merged using
an algorithm for index merging. Final evaluation of the Google language model revealed
that the current implementation of the Moses MT framework cannot be used with very large
language models. This is due to the fact that the internal phrase-table of the Moses decoder
penalizes all unknown words and is hence not able to access any corresponding n-gram
data within the language model.

Further research and refinements to the Moses MT design seem to be necessary before a
language model such as the GoogleLM can be used to create improved translations.

66

Chapter 7

Conclusion

In this chapter we summarize what we have achieved with regard to the initial ideas for this
thesis (section 7.1), what lessons we have learnt about limitations and problems when using
very large language models with the Moses MT framework (section 7.2). Finally, we propose a
number of possible ways to improve and refine our work in future research (section 7.3).

7.1 Work Done

In this thesis work, we have investigated the current state of the art for statistical machine
translation and statistical language models using the open source Moses MT framework and
the SRI language modeling toolkit.

Initially, we have discovered that a better translation quality can be achieved when higher
order n-gram language models are used. More specifically, we have shown that the usage of
5-grams instead of 3-grams has a measurable effect on the overall translation quality of a
given set of test sentences.

Further experiments with the MT system led to the conclusion that the current design of
the Moses MT decoder lacks support for persistent language model handling. Each and every
time the system is started, it has to re-load the complete language model from disk which
slows down the overall performance and hinders experimentation.

7.1.1 Indexed Language Model

For the diploma thesis, we tried to integrate these findings into the machine translation
framework. To allow larger language models which could potentially improve the quality
of the translated sentences, we decided to design a new indexed language model class and a
corresponding indexer tool.

67

Chapter 7 Conclusion

The basic idea was to create this model such that the amount of required computer memory
could be flexibly controlled by the chosen indexing method. The integration should result
in a prototype implementation which could later be extended for further dissemination and
actual usage.

For the indexer tool, we then designed a basic indexing algorithm which was only dependent
on a set of suitable indexing parameters. We chose to index n-gram data based on the
notion of character-level n-gram prefixes and defined several possible indexing methods. These
were then applied to several language models and the resulting indexes were compared and
evaluated. To allow an efficient evaluation we defined the notions of compression rate, large
subset rate, and compression gain.

We then created a new language model class inside the Moses MT framework which should
be able to load index data and map all n-gram requests to the corresponding parts of the
language model files on hard disk. This indexed language model was built and tested to be
fully compatible to the SRILM format which is a common choice for language modeling with
the Moses system.

Evaluation of the indexed models has shown that the actual amount of computer memory
which is required to utilize a given language model can be efficiently controlled by the chosen
indexing parameters. More precisely this has enabled us to use very large language models
without having to load them completely into memory. While the translation quality remained
unchanged, we experienced a severe impact on the overall decoding performance. The current
prototype implementation can still be improved to reduce the performance loss and to make
the indexed language model usable on a larger scale.

7.1.2 Language Model Server

Next to the indexed language model, we have also designed and implemented a language
model server which allows to separate the Moses MT decoder from the language model data.
A new language model class has been integrated into the framework and now enables us to
access n-gram data from the same machine or even the internet. That way, we wanted to
improve the decoder startup times while keeping the translation quality unmodified.

We also saw a potential for new applications which could be enriched by language model
data. In order to allow these to connect to the language model server, we designed a simple
communication protocol. Even shell scripts or web applications could now interact with the
language model server which further adds to its value.

68

Section 7.2 Lessons Learnt

When evaluating the performance of the remote language model, we also experienced unex-
pected problems. As the Moses decoder is not designed to interact with a remote language
model server, it is not able to collect multiple requests to the language model but sends them
all one after the other. This creates a lot of delay and hence lessens the actual usability of
the language model server. Again, it is possible to further improve the interaction between
the Moses MT framework and the remote language model class to create a better integration
with the language model server.

7.2 Lessons Learnt

7.2.1 Indexed Language Model

The current implementation of the indexed language model and the accompanying indexer
tool requires us to invest a lot more time to create translations with the Moses decoder. This
is not an error of the chosen implementation but implicitly introduced by design. While this
was expected behaviour, the actual amount of performance loss was still surprising. However,
when put into the right perspective, i.e. when comparing the speed of computer memory to
the access times of hard disks, this drawback seems less serious.

7.2.2 Language Model Server

When evaluating the language model server, we experienced serious performance problems
which were caused by the inability of the Moses MT framework to support batched n-gram
requests. Also as both TCP communication and IPC shared memory methods are inherently
slower than direct memory access, the remote language model by design cannot be as fast as
the original SRILM implementation.

7.2.3 Google Language Model

An extremely inconvenient finding was observed when we tried to build and evaluate a very
large language model based up the Google 5-gram corpus. It was not clear that the SRILM
toolkit would fail for such a huge amount of data as well as the phrase-table problem did
effectively hinder any actual usage of the Google language model. Hence we could not finish
our evaluations and thus will have to wait for later research results on the impact of a Google
language model on translation quality.

69

Chapter 7 Conclusion

7.3 Future Work

After having finished work on this thesis, we have shown that indexed language models
within the Moses MT framework are feasible and can be used to utilize very large language
models. As we have seen, the memory requirements can be adapted using a suitable set of
Γi parameters. The whole implementation should now be used under real world conditions to
improve the overall stability and performance of the system. The following sections propose
several ideas for improvements and future work in the field of indexed language models.

7.3.1 Improved Performance

First and foremost it seems to be of significant importance to optimize the processing speed
of the indexed language model class and its underlying foundations. If the performance loss
can be reduced this will make the complete system more usable for experimentation. This
would also allow for a broader dissemination of this work.

To improve the efficiency of the indexed language model and its integration into the Moses
MT framework it seems to be reasonable to develop an improved n-gram cache inside the
top-level Moses class LanguageModelIndexed replacing the n-gram cache which is currently
located in the low-level IndexedLM class.

7.3.2 Separation of Language Model Data

It would also be interesting to separate language model data into a small fraction which
is always available inside memory and a large fraction that is accessed using the indexed
language model paradigm. For instance it might reduce the number of hard disk accesses
if we kept all unigram data available in memory while larger n-grams would still be loaded
from disk. This hybrid approach would not require much additional memory, yet the possible
performance gain is tempting.

7.3.3 Batched N-gram Requests

When trying to work with our language model server we experienced problems with the
internal design of Moses language model handling. At the moment there exists no way to
collect multiple n-gram requests which are then sent in a batched request. As the availability
of such batched requests could greatly improve the overall system performance for the remote
language model class it seems to be an interesting area for future work.

70

Section 7.3 Future Work

It might be possible to collect all n-gram requests on phrase or sentence level or to use batches
of a pre-defined size. However this approach will most likely require several complex changes
to the Moses decoder.

7.3.4 More Flexible Phrase-tables

The large Google language model did not yield any measurable improvement in translation
quality as the phrase-table prevented the Moses decoder to access any of the additional
information contained within the language model. The current implementation only works
for tokens that are contained within the phrase-table, all other words are treated as unknown
words and do not contribute to the overall translation quality.

As we want to utilize the vast amounts of n-gram data which are provided by n-gram corpora
such as the Google 5-gram corpus we have to find new ways to handle words that are unknown
to the phrase-table. It is perfectly possible that an unknown token is contained within the
language model data and could thus be used to create a better translation. This would require
changes to Moses internal phrase scoring.

7.3.5 Hybrid Language Models

Last but not least, it also seems a worthwhile effort to explore the advantages and problems of
combined hybrid language models. Instead of using only a single language model we could use
a small in-domain language model in SRI format and combine that with a large out-domain
indexed language model. Together both models could improve translation quality and reduce
the amount of error caused by the domain of the source text.

71

Chapter 7 Conclusion

72

Appendices

Appendices

Appendix Introduction

The following appendices try to give a more detailed insight into the program code and class
design which have been developed as part of this diploma thesis. As the full source code is
way to large to be wholly included into this document, only a chosen subset of important code
is printed and documented. For more details, refer to comments within the source code.

Source Code License

All source code developed as part of this thesis is c© 2007 by Christian Federmann.

Redistribution and use in source and binary forms, with or without modification, are permit-
ted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AS IS AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-

CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-

CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-

LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

73

74

Appendix A

N-gram Indexing Code

The indexing tool has been designed and implemented using C++. It is based on the Indexer

class and built using the CmdLine class and the Debug macros. This appendix will briefly
introduce the nuts and bolts of the class design and provide further informations on the
program implementation.

The source code is freely available at http://www.cfedermann.de/diploma under the license
terms printed on page 73.

A.1 Class: Indexer

The Indexer class takes care of parsing a single or multiple language model files in ARPA
format. It uses a set of given Γi parameters to create index data out of the language model
data conforming to one of the indexing methods defined in chapter 3. It also handles uni-
gram vocabulary creation and writes out sorted model files for each of the given language
models.

A.1.1 Constants

The Indexer class defines the following constants:

#define FLUSH_LINES 1024

#define MAX_NGRAM_SIZE 5

Description:

! the constant FLUSH LINES defines how many lines are written at once.

! the constant MAX NGRAM SIZE sets the maximum order for n-grams.

75

Appendix A N-gram Indexing Code

A.1.2 Typedefs

The Indexer class defines the following types:

struct IndexData { ... };

typedef std::map<std::string, bool> VocabType;

typedef std::map<std::string, IndexData> IndexType;

typedef VocabType::iterator VocabIterator;

typedef IndexType::iterator IndexIterator;

More information on the IndexData struct can be found on page 80.

Description:

! the struct IndexData stores all n-gram prefix data.

! the type VocabType defines the vocabulary structure. The bool is used to memorize
which unigrams have already been written to the vocabulary file and which have not.
This is necessary to prevent creating double entries inside the vocabulary when multiple
language model files are processed.

! the type IndexType defines the index structure.

! the type VocabIterator defines an iterator over VocabType

! the type IndexIterator defines an iterator over IndexType

A.1.3 Public Interface

The public interface is shown below:

public:

Indexer(std::map<std::string, std::string>& arguments);

~Indexer();

void createIndex();

void writeIndex();

void writeVocab();

IndexType& getIndex();

VocabType& getVocab();

76

Section A.1 Class: Indexer

Description:

! the constructor Indexer(std::map<std::string, std::string>&) expects a std::map
of command line arguments which is used to configure the Indexer class before pro-
cessing the language model files.

! the destructor ∼Indexer() releases all allocated heap memory which has been used to
store the language model contents.

! the method void createIndex() takes care of the actual index creation. It iterates over
all given language model files, generating index data and unigram vocabulary for each
of them. After this method has returned, all index and vocabulary data is processed
and can be written to the corresponding files using writeIndex() and writeVocab().
Additionally, it is possible to post-process the data using getIndex() and getVocab().

! the method void writeIndex() writes index data to the index file. It flushes content
to file every FLUSH LINES lines. This can be configured in indexer.h.

! the method void writeVocab() writes the unigram vocabulary to the vocabulary file.
Again, lines are flushed to the file every FLUSH LINES lines.

! the method IndexType& getIndex() can be used to access the contents of the index

map for additional post-processing.

! the method VocabType& getVocab() allows to access the vocabulary map.

A.1.4 Private Interface

The private interface looks like this:

private:

Indexer();

void createIndex(const std::string& model_file, int file_id);

Description:

! the default constructor Indexer() is private to prevent any call to it.

! the method void createIndex(const std::string&, int) takes care of the actual
construction of both index data and unigram vocabulary for the language model file
specified by the const std::string& parameter. The second parameter int encodes
the file id of this model file which is used internally.

77

Appendix A N-gram Indexing Code

A.1.5 Data Members

The available data members of the Indexer class are listed below:

std::vector<std::string> language_models;

std::string index_file;

std::string vocab_file;

std::string indexing_method;

std::vector<int> gammas;

VocabType vocabulary;

IndexType index;

bool autoflush;

std::fstream _index, _vocab;

int start_id;

Description:

! the language models vector stores the list of language model files which should be
processed when creating the index data.

! the index file string specifies the name of the index file.

! the ivocab file string specifies the name of the vocabulary file.

! the indexing method string specifies the chosen indexing method which is used to
setup the Γi parameters during class instantiation. It has to be one of the following
four values: increasing, decreasing, uniform, custom. For more information on
these methods refer to the corresponding section on page 22.

! the gammas vector specifies the Γi parameters for the index creation.

! the vocabulary map stores all unigrams contained in the language model files.

! the index map contains the index data which is stored as IndexData structs.

! the autoflush bool shows if the autoflush feature is enabled. For more information on
this refer to page 80.

! the index fstream is used to open the index file.

! the vocab fstream is used to open the vocab file.

! the start id int defines the file id for the first given language model.

78

Section A.2 Program: Main Loop

A.2 Program: Main Loop

A.2.1 Code

1: try {

2: // create indexer instance and hand over arguments

3: Indexer* indexer = new Indexer(arguments);

4:

5: // create index data by parsing the language model files

6: indexer->createIndex();

7:

8: // write out index data

9: indexer->writeIndex();

10:

11: // write out vocabulary data

12: indexer->writeVocab();

13:

14: // clean up and exit

15: delete(indexer);

16: }

17: catch (std::string e) {

18: std::cout << "[exception] " << e << std::endl;

19: return -1;

20: }

Description:

! lines 2-23 of the main loop are embedded into a try ... catch construct which
catches all expceptions that might be thrown during program execution.

! line 3 creates the Indexer instance and configures it using the command line argu-
ments which have been processed earlier. See the file indexer.cpp for more detailed
information on command line argument handling.

! line 6 creates the index map and fills it with indexed contents from the given language
model files.

! line 9 writes the computed index data to the index file.

! line 12 writes the unigram vocabulary to the vocab file.

! line 15 takes care of correct destruction of the Indexer instance.

! lines 17-20 catch any exceptions thrown and report them.

79

Appendix A N-gram Indexing Code

A.3 Struct: IndexData

The index map stores all index data created by createIndex(). For each of the entries the
corresponding position inside the language model file, the file id of the language model and
the number of lines being referenced by the corresponding index key have to be stored. As
the Indexer tool has to write out a sorted model file for each of the given language model files,
it is also necessary to collect the corresponding lines for each index entry. A pointer is used
to keep the index map small and fast. For more information have a look at page 81.

A.3.1 Struct Definition

struct

IndexData {

unsigned long file_pos;

unsigned int file_id;

unsigned long line_count;

std::string* lines;

};

A.4 Features

A.4.1 Autoflush

As the Indexer tool is designed to be capable of indexing multiple files, it is configured
to autoflush contents to the corresponding output files. After a language model has been
processed by createIndex(const std::string&), the contents of both the index and the
vocabulary maps are written to disk. The two maps are cleared before the next language
model file is processed which reduces the overall memory requirements of the tool and allows
to handle very large language model files.

The autoflush mode can be disabled using the -n or --no-autoflush command line param-
eters. If any of these is present, the whole index and vocabulary data is read into memory
instead of being written to disk. The writeIndex() method can be used to write index data
into the index file, writeVocab() creates the vocabulary. If it becomes necessary to post-
process either index or vocabulary data before their contents are written, the getIndex()

and getVocab() methods can be used.

80

Section A.4 Features

A.4.2 Sorted Model Files

To allow fast access to each subset of an indexed language model, it is necessary to create a
sorted version of the original model file. This ensures that all lines which are indexed by a
given n-gram prefix can be looked up in an efficient way as in the sorted file it is guaranteed
that all these n-gram lines will follow one after the other. Please note that the resulting sorted
model files are not in ARPA format anymore as all unnecessary data such as ”\data\” or
”\1-grams:” is removed during the creation process. Sorted model files are simply a way to
speed up n-gram lookup.

A real world example of such a sorted model file looks is shown on the left, the corresponding
original language model file (which is not sorted with regard to the n-gram prefixes) can be
seen on the right:

file: europarl-v3.srilm.sorted

-2.916459 ! -2.05075

-2.76344 ! ! -0.2412159

-0.5342772 ! ! ! -0.0409897

-0.1764681 ! ! ! </s>

-0.1985702 ! ! </s>

-1.864807 ! " -0.5895861

-1.755537 ! ")

-1.513885 ! " ,

-0.9381909 ! " . -0.6377587

-0.0001343653 ! " . </s>

-0.2022471 ! " </s>

-1.308389 ! ’ -0.9424482

-1.839963 ! ’) -0.3197733

-0.2494251 ! ’) </s>

-1.099362 ! ’ , -0.04221211

-0.8973418 ! ’ , and

-1.010028 ! ’ , but

-2.236138 ! ’ - -0.22873

-0.3250176 ! ’ - and

-0.9864706 ! ’ . -1.138361

file: europarl-v3.srilm

-2.916459 ! -2.05075

-3.028812 " -0.5158522

-6.265231 # -0.1555177

-4.620731 $ -0.2908757

-3.471805 % -0.7785481

-4.364939 & -0.6885265

-2.451123 ’ -0.6866914

-5.726556 ’a -0.1555177

-6.265231 ’abandon -0.1555177

-6.265231 ’abord -0.1555177

-6.265231 ’aborder -0.1555177

-6.265231 ’aboville -0.1555177

-6.265231 ’absolue -0.1555177

-6.265231 ’acceptation -0.1555177

-6.109078 ’accesso -0.1555177

-6.265231 ’accompagnement -0.1555177

-6.109078 ’accord -0.1856652

-6.265231 ’accords -0.1555177

-6.265231 ’accueille -0.1555177

-6.265231 ’accuse -0.1555177

81

Appendix A N-gram Indexing Code

82

Appendix B

Indexed Language Model Code

The indexed language model classes have been designed and implemented using C++. The
central code can be found inside the IndexedLM and the LanguageModelIndexed source code
files. In order to efficiently store and access index and n-gram data, two additional classes
IndexTree and NgramTree have been developed. The following appendix will briefly describe
these classes and provide further informations on the actual implementation.

The source code is freely available at http://www.cfedermann.de/diploma under the license
terms printed on page 73.

B.1 Class: IndexedLM

The IndexedLM class cares for low-level access to a given index file and provides methods to
query the indexed language model. It is possible to look up n-gram probabilities and backoff
weights if the n-gram is available inside the language model, an internal cache is available to
improve performance. Queries can be sent based on n-gram surface forms or word ids.

B.1.1 Typedefs

The IndexedLM class defines the following types:

struct NGramData { ... };

typedef std::map<std::string, VocabId> VocabType;

typedef std::map<std::string, PrefixId> PrefixType;

typedef std::vector<std::string> IdType;

typedef VocabType::iterator VocabIterator;

typedef PrefixType::iterator PrefixIterator;

typedef IdType::iterator IdIterator;

83

Appendix B Indexed Language Model Code

Description:

! the struct NGramData is used to store all n-gram data in a single place. More detailed
information on this struct can be found on page 87.

! the type VocabType defines the vocabulary structure, a mapping from word surface
forms to a unique, numeric identifier. The VocabId type is defined as part of the
NgramTree class.

! the type PrefixType defines the structure of the prefix vocabulary. As we have explained
in chapter 3, we use n-gram prefixes to index a set of n-grams. Similar to the vocabulary
which stores numeric ids for each single word, we store an id for each possible n-gram
prefix. This helps to convert n-gram words into prefix keys very quickly.

! the type IdType is used to store the list of possible words inside the language model
vocabulary. The corresponding, unique id is determined by the index position inside
the vector. This allows fast retrieval of a word surface form given the word id without
the need to instantiate a second map.

! the type VocabIterator defines an iterator over VocabType.

! the type PrefixIterator defines an iterator over PrefixType.

! the type IdIterator defines an iterator over IdType.

B.1.2 Public Interface

The public interface is shown below:

public:

IndexedLM();

~IndexedLM();

void clearCache();

void loadIndex(const std::string& index_file);

void loadVocab(const std::string& vocab_file);

VocabId getUnknownId();

VocabId getVocabId(const std::string& word);

std::string getVocabString(VocabId id);

NGramData getNgramScore(const std::string& ngram);

NGramData getNgramScore(VocabId word, VocabId* context);

IndexTree* getIndexTree();

84

Section B.1 Class: IndexedLM

VocabIterator getVocabBegin();

VocabIterator getVocabEnd();

IdIterator getIdsBegin();

IdIterator getIdsEnd();

Description:

! the constructor IndexedLM() creates a new instance of the IndexedLM class.

! the destructor ∼IndexedLM() releases all n-gram and index data and destroys the
IndexedLM object.

! the method void clearCache() can be used to clear the internal n-gram cache. This
could for instance be done once a sentence has been fully translated or after a given
number of sentences have been translated.

! the method void loadIndex(const std::string&) takes care of loading an index
from the given file which should have been generated by the Indexer discussed in
chapter 3. After the index data has been loaded, the IndexedLM object can be actually
used.

! the method void loadVocab(const std::string&) loads the language model vocab-
ulary from the given file.

! the method VocabId getUnknownId() returns the numeric id for the unknown word.
Usually, the unknown word is mapped to 0.

! the method VocabId getVocabId(const std::string&) can be used to look up the
numeric id for a given word. If the word is not contained within the vocabulary, the id
of the unknown word is returned instead.

! the method std::string getVocabString(VocabId) returns the surface form of the
word specified by the given word id. If the word id is invalid, the empty string "" is
returned.

! the method NGramData getNgramScore(const std::string& tries to look up the given
string inside the language model. It will determine the maximum match and return the
corresponding probability and backoff weight.

! the method NGramData getNgramScore(VocabId, VocabId*) is identical to the afore-
mentioned NGramData getNgramScore(const std::string&. However it does not get
an n-gram string but word ids.

! the method IndexTree* getIndexTree() returns a pointer to the root of the tree.

! the method VocabIterator getVocabBegin() returns an iterator to the first element

85

Appendix B Indexed Language Model Code

of the vocabulary map. This is used to allow the LanguageModelIndexed class to access
the vocabulary data.

! the method VocabIterator getVocabEnd() returns an iterator to the end of the vo-
cabulary map. Again, this is available for LanguageModelIndexed.

! the method IdIterator getIdsBegin() returns an iterator to the first element of the
ids vector. As with the previous iterator methods, this allows the LanguageModelIndexed
class to access the ids map.

! the method IdIterator getIdsEnd() returns an iterator pointing to the end of the ids
vector. Again, this is available for LanguageModelIndexed.

B.1.3 Private Interface

The private interface is shown below:

private:

NGramData loadNgram(IndexTree*, std::vector<VocabId>, unsigned int);

Description:

! the method NGramData loadNgram(IndexTree*, std::vector<VocabId>, unsigned

int) tries to find an n-gram inside the language model data. The first parameter
defines the subset inside the index which could contain the n-gram. The n-gram itself
is specified by a vector of word ids. Finally, the length of the n-gram or some prefix of
the n-gram is defined by an integer.

B.1.4 Data Members

IndexTree* index;

VocabType* vocab;

IdType* ids;

PrefixType* prefixes;

std::map<std::pair<VocabId, unsigned int>, PrefixId> word_to_prefix;

std::map<int, std::string> model_files;

std::map<int, std::fstream*> model_handles;

std::vector<int> model_gammas;

NGramTree* model_cache;

VocabIterator vocab_end;

const VocabId model_unknown;

86

Section B.1 Class: IndexedLM

Description:

! the index pointer stores the address of an IndexTree object. This object contains all
index data. For more information on the IndexTree class, refer to page 88.

! the vocab pointer stores the address of the vocabulary map.

! the ids pointer stores the address of the id vector.

! the prefixes pointer stores the address of the prefix map.

! the word to prefix map stores the mapping from word surface forms to the correspond-
ing n-gram prefix ids. This allows faster conversion from surface form to n-gram prefix.

! the model files map stores the file ids and names of all index files.

! the model handles map stores the std::fstream* pointers to the (opened) file objects.

! the model gammas vector contains the Γi parameter set for the current index files.

! the model cache pointer stores the address of an NGramTree object. This object col-
lects n-gram data and improves overall system performance. More information on the
NGramTree class is available on page 90.

! the vocab end iterator points to the end of the vocabulary map. This is used to optimize
access time by avoiding superfluous calls to map::end() which is static in our context.

! the model unknown value represents the numeric id for the unknown word.

B.1.5 Struct: NGramData

All n-gram data is stored in struct NGramData variables. This includes both the conditional
probability and the backoff weight of an n-gram entry, the size of the n-gram and a bool

attribute which encodes the validity of the specific n-gram data object. In order to avoid any
memory overhead we chose a struct instead of a dedicated class implementation.

The struct definition is shown below:

struct

NGramData {

bool invalid;

unsigned int size;

double cp, bow;

};

87

Appendix B Indexed Language Model Code

B.2 Class: IndexTree

The IndexTree class has been built to store large collections of index entries in an efficient
manner. Each node inside the index tree represents an n-gram prefix inside the index, defined
by the corresponding prefix id. If there exists some continuation from the current node, a
map of pointers to subsequent nodes is available.

Starting from the root of the index tree it is very easy to locate the n-gram subset information
for any given n-gram. First, all words of the n-gram are converted to prefix ids which only re-
quires lookups from a map. Afterwards, a single tree traversal will determine whether the given
n-gram can be found within the language model or not. If the n-gram subset exists, the final
node contains the relevant subset information which is of type ExtendedIndexData.

B.2.1 Typedefs

The IndexTree class defines the following types:

struct ExtendedIndexData { ... };

typedef unsigned long PrefixId;

Description:

! the struct ExtendedIndexData holds all information for a single index entry. More
information on the actual definiton of this struct can be found on page 90.

! the type PrefixId is used to assign each possible n-gram prefix a unique, numeric id.
This allows to implement fast map lookup of n-gram prefixes without the need to actually
compute the prefix.

B.2.2 Public Interface

The public interface of the IndexTree class is shown below:

public:

IndexTree();

IndexTree(ExtendedIndexData*);

~IndexTree();

bool root();

unsigned int size();

IndexTree* prev();

IndexTree* next(PrefixId);

IndexTree* insert(PrefixId);

88

Section B.2 Class: IndexTree

IndexTree* insert(PrefixId, ExtendedIndexData*);

void update(ExtendedIndexData*);

ExtendedIndexData* data();

Description:

! the default constructor IndexTree() creates an ”empty” index node which does not
have any n-gram subset information attached.

! the constructor IndexTree(ExtendedIndexData*) allows to create a new index node
and binds it to the subset information specified by the given ExtendedIndexData*

pointer.

! the destructor ∼IndexTree() cares for correct deletion of the tree nodes and releases
any allocated memory.

! the method bool root() checks whether the current index node is the root of the whole
index tree or not. The root of the tree is the node which does not have any precedent
nodes, i.e. the node where prev() == NULL.

! the method unsigned int size() returns the number of nodes of the index tree.

! the method IndexTree* prev() returns an IndexTree* pointer to the parent node.

! the method IndexTree* next(PrefixId) tries to find a child node of the current tree
node with the given prefix id. If no such node exists inside the index tree, the empty
pointer NULL is returned, otherwise the method will return the address of the next node.

! the method IndexTree* insert(PrefixId) can be used to insert a new node into the
index tree. This node will become a child of the current tree node, its id will be the
given prefix id. No subset information will be attached to the new node. The method
will return an IndexTree* pointer to the new node.

! the method IndexTree* insert(PrefixId, ExtendedIndexData*) basically does the
same as the previous except that it also attaches subset information to the new node.
Effectively this creates a new, ”active” node, i.e. a node carrying information. Again,
an IndexTree* pointer to the new node is returned.

! the method void update(ExtendedIndexData*) updates the subset information of the
current index node with the given ExtendedIndexData* pointer.

! the method ExtendedIndexData* data() returns an ExtendedIndexData* pointer to
the subset information attached to an index node. If no subset information is available,
the empty pointer NULL is returned instead.

89

Appendix B Indexed Language Model Code

B.2.3 Data Members

The available data members of the IndexTree class are listed below:

IndexTree* prev_ptr;

std::map<PrefixId, IndexTree*> next_ptr;

ExtendedIndexData index_data;

Description:

! the prev ptr pointer stores the address of the parent of the current index node.

! the next ptr map stores pointers to all subsequent index nodes.

! the index data struct stores all subset information related to the current index node.

B.2.4 Struct: ExtendedIndexData

N-gram subset information is stored inside ExtendedIndexData struct variables. This in-
cludes the id of the file which contains the n-gram subset, the position inside this file and
the number of lines which form the n-gram subset.

The struct definition is shown below:

struct

ExtendedIndexData {

int file_id;

unsigned long file_pos, line_count;

};

B.3 Class: NgramTree

The NgramTree class allows to store large sets of n-grams in a space efficient way. Each node
inside the n-gram tree represents a word inside the vocabulary, defined by the corresponding
word id. If there exists some n-gram continuation for this word id, a map of pointers to
subsequent nodes is built. Starting from the root of the n-gram tree, it is then easily possible
to search for any given n-gram. Only a single tree traversal is required to determine whether
the n-gram is known or not.

Any n-gram inside the original language model is represented by some node within the n-
gram tree. As it is possible that some n-gram prefixes are not available and do not carry any
probability or backoff weight, we distinguish active and inactive nodes. An active tree node
represents a valid n-gram inside the language model and carries the corresponding information.
Inactive nodes carry no information.

90

Section B.3 Class: NgramTree

B.3.1 Typedefs

The NgramTree class defines the following types:

typedef unsigned long VocabId;

Description:

! the type VocabId is used to assign numeric ids to words inside the vocabulary. The
unsigned long type allows vocabularies of up to 4,294,967,294 words.

B.3.2 Public Interface

The public interface of the NGramTree class is shown below:

public:

NGramTree();

NGramTree(double, double);

~NGramTree();

bool root();

bool active();

unsigned int size();

unsigned int children();

NGramTree* prev();

NGramTree* next(VocabId);

NGramTree* insert(VocabId);

NGramTree* insert(VocabId, double, double);

double cp();

double bow();

VocabId word();

std::vector<VocabId> ngram();

Description:

! the default constructor NGramTree() creates a new node inside an n-gram tree. No
n-gram information is attached to the new node hence this method is usually called to
create intermediate nodes without any information.

! the constructor NGramTree(double, double) can also be used to create a new node in-
side an n-gram tree. Additionally, the n-gram data section of the node will be initialized
using the given parameters.

91

Appendix B Indexed Language Model Code

! the destructor ∼NGramTree() releases any allocated memory, cleans up and destroys
the current NGramData object.

! the method bool root() checks whether the current n-gram node is the root of the
complete n-gram tree or not. The root of the tree is the node which does not have any
precedent nodes, i.e. the node where prev() == NULL.

! the method bool active() checks whether the current n-gram node has n-gram data
attached or not. This checks the bool attribute active node.

! the method unsigned int size() returns the number of nodes of the n-gram tree
spanned by the current n-gram node.

! the method unsigned int children() returns the number of children of the current
n-gram node.

! the method NGramTree* prev() returns an NGramTree* pointer to the parent node.

! the method NGramTree* next(VocabId) tries to find a child node of the current tree
node with the given word id. If no such node exists inside the n-gram tree, the empty
pointer NULL is returned, otherwise the method will return the address of the next node.

! the method NGramTree* insert(VocabId) can be used to insert a new node into the
n-gram tree. This node will become a child of the current tree node, its id will be the
given word id. No n-gram data will be attached to the new node. The method will
return an NGramTree* pointer to the new node.

! the method NGramTree* insert(VocabId, double, double) basically does the same
as the previous except that it also attaches n-gram data to the new node. Effectively this
creates a new, ”active” node, i.e. a node carrying information. Again, an NGramTree*

pointer to the new node is returned.

! the method double cp() returns the conditional probability of the current n-gram node
or 0 if the current n-gram node is not active.

! the method double bow() returns the backoff weight of the current n-gram node or 0
if the current n-gram node is not active.

! the method VocabId word() returns the word id of the current n-gram node.

! the method std::vector<VocabId> ngram() returns the vector of word ids which
form the n-gram starting from the root of the n-gram tree up to the current n-gram
node. This method calls the private method ngram() to compute this vector.

92

Section B.3 Class: NgramTree

B.3.3 Private Interface

The private interface of the NGramTree class is shown below:

private:

std::vector<VocabId> _ngram(std::vector<VocabId>&);

Description:

! the method std::vector<VocabId> ngram(std::vector<VocabId>&) is an internal
helper method which is called by std::vector<VocabId> ngram().

B.3.4 Data Members

The available data members of the NGramTree class are listed below:

NGramTree* prev_ptr;

std::map<VocabId, NGramTree*> next_ptr;

double cp_value, bow_value;

VocabId word_id;

bool active_node;

Description:

! the prev ptr pointer stores the address of the parent of the current n-gram node.

! the next ptr map stores pointers to all subsequent n-gram nodes.

! the cp value double contains the conditional probability of the current n-gram node.

! the bow value double contains the backoff weight of the current n-gram node.

! the word id VocabId contains the word id of the current n-gram node.

! the active node bool is set to true if and only if the current n-gram node does have
n-gram data attached.

93

Appendix B Indexed Language Model Code

94

Appendix C

Language Model Server Code

The language model server has been designed and implemented using C++. It is based upon
the LanguageModelServer class and built using the CmdLine class and the Debug macros.
This appendix will briefly introduce the nuts and bolts of the class design and provide further
informations on the program implementation.

The source code is freely available at http://www.cfedermann.de/diploma under the license
terms printed on page 73.

C.1 Class: LanguageModelServer

The LanguageModelServer class loads a language model into memory and makes its contents
available via TCP communication or IPC shared memory methods. The server will take care
of initializing the communication channels and then wait for client requests. It serves forever
or until an explicit SHUTDOWN command is received.

If the server is started in MIXED mode, i.e. if both TCP and IPC client requests are supported,
it will prefer IPC connections and handle them first. This will guarantee fastest performance
for IPC requests. In order to support handling of these two communication channels, the TCP

port is made non-blocking and both handler routines are called within the server loop.

C.1.1 Constants

The LanguageModelServer class defines the following constants:

const static int TCP_BUFFER_SIZE = 256;

const static int IPC_BUFFER_SIZE = 256 * 1024;

95

Appendix C Language Model Server Code

Description:

! the constant TCP BUFFER SIZE defines the buffer size for TCP connections. The maxi-
mum TCP buffer size is constrained by the maximum TCP packet size.

! the constant IPC BUFFER SIZE defines the buffer size for IPC connections. This should
generally be larger than the TCP buffer size as large shared memory areas can help to
improve language model server performance.

C.1.2 Typedefs

The LanguageModelServer class defines the following types:

enum Mode { ... };

enum Type { ... };

Description:

! the enum Mode encodes the language model server mode. Possible values are IPC = 0,
TCP = 1 or MIXED = 2 depending on the actual server configuration.

! the enum Type is used to store information on the type of the language model which is
handled by the language model server. At the moment, this can either be SRI = 0 or
INDEXED = 1.

C.1.3 Public Interface

The public interface is shown below:

public:

LanguageModelServer(Mode mode, Type lm_type, int port,

const std::string& model_file, int model_order);

~LanguageModelServer();

bool is_usable();

Mode get_mode();

Type get_type();

void shutdown();

std::string handle_request(const std::string& request);

void tcp_handler();

void ipc_handler();

96

Section C.1 Class: LanguageModelServer

Description:

! the constructor LanguageModelServer(Mode, Type, int, const std::string&, int)

creates a new instance of the LanguageModelServer class. The actual server configura-
tion is set by the constructor arguments. In order to create an object, the constructor
needs to know which communcation channel(s) it has to use, the port or key number,
what kind of language model is served, where the language model file can be found and
the order of the model file.

! the destructor ∼LanguageModelServer() closes all open connections, releases shared
memory areas, cleans up and destroys a LanguagModelServer class instance.

! the method bool is usable() can be used to query the status of a LanguageModelServer
object. If the server is up and running, true is returned, otherwise false.

! the method Mode get mode() returns the server mode.

! the method Type get type() returns the type of the language model which is made
available by the LanguageModelServer object.

! the method void shutdown() activates the shutdown procedure of the language model
server. This exits the main server loop and calls the destructor. Afterwards, no con-
nections to the server are possible until a new server instance has been created.

! the method std::string handle request(const std::string&) takes a client re-
quest and computes the corresponding response to the client.

! the method void tcp handler() checks if there exist incoming TCP client requests
and handles them if possible. This internally calls the handle request() method to
compute the response and afterwards sends back the result to the client.

! the method void ipc handler() checks if any IPC client has written a request to shared
memory. If that is the case, handle request() is called and a response for the client
is generated and written back to shared memory. Deletion of the client request data in
the shared memory block signals that the result has been written and causes the client
to copy the response.

97

Appendix C Language Model Server Code

C.1.4 Private Interface

The private interface looks like this:

private:

LanguageModelServer();

bool tcp_init(int port);

void tcp_exit();

bool ipc_init(int port);

void ipc_exit();

Description:

! the default constructor LanguageModelServer() is private to prevent any call to it.

! the method bool tcp init(int) takes care the initialization of the TCP connection. It
gets the port as integer parameter, opens the server socket and binds it to the given
port. The method returns true if the connection has been established successfully
and false if some error occured. The server socket is made non-blocking for MIXED

language model servers to support requests from both TCP and IPC clients.

! the method void tcp exit() closes the server socket and cleans up. Afterwards no
TCP requests can be handled until a new connection has been created.

! the method bool ipc init(int) creates the shared memory areas and gets a semaphore
to control read/write access via IPC. The integer parameter is used to compute two
unique numeric ids for the shared memory blocks. Again, true is returned if IPC setup
was successful, false if some error occured.

C.1.5 General Data Members

The available data members of the Indexer class are listed below:

Mode server_mode;

Type server_type;

LanguageModelSingleFactor* server_lm;

bool server_usable;

98

Section C.1 Class: LanguageModelServer

Description of general attributes:

! the server mode Mode attribute stores the server mode.

! the server type Type attribute stores the type of the language model.

! the server lm pointer stores the address of the actual language model instance. It is
set by the LanguageModelServer(...) constructor and cleared by the destructor
∼LanguageModelServer().

! the server usable bool attribute encodes the status of the language model server.

C.1.6 TCP Data Members

The available data members used for TCP communication are listed below:

// tcp attributes

int server_socket, client_socket;

struct sockaddr_in server_addr, client_addr;

int addr_size, data_size;

char tcp_data[TCP_BUFFER_SIZE];

Description of TCP attributes:

! the server socket and client socket int attributes are used to establish a TCP con-
nection between client and server.

! the server addr and client addr struct attributes are used internally to store address
details for client and server.

! the addr size and data size int attributes store the size of address data structures
and the number of bytes received from the client.

! the tcp data char buffer is used to send and receive data from server to client.

C.1.7 IPC Data Members

The available data members used for IPC communication are listed below:

// ipc attributes

key_t server_key, client_key;

int server_semid, server_shmid, client_shmid;

struct sembuf server_semop[2];

char *server_data, *client_data;

99

Appendix C Language Model Server Code

Description of IPC attributes:

! the server key and client key key t attributes are used to create unique identifiers
for server and client.

! the server semid, server shmid and client shmid int attributes are used to identify
the shared memory areas and the semaphore for both client and server.

! the server semop struct attribute is used to perform semaphore operations.

! the server data and client data pointers store the addresses of the shared memory
blocks for server and client.

C.2 Program: Main Loop

C.2.1 Code

1: try {

2: LanguageModelServer* lmserver = new LanguageModelServer(...);

3:

4: while(lmserver->is_usable()) {

5: switch(lmserver->get_mode()) {

6: case LanguageModelServer::IPC:

7: lmserver->ipc_handler();

8: break;

9:

10: case LanguageModelServer::TCP:

11: lmserver->tcp_handler();

12: break;

13:

14: case LanguageModelServer::MIXED:

15: lmserver->ipc_handler();

16: lmserver->tcp_handler();

17: break;

18: }

19: }

20:

21: delete lmserver;

22: }

23: catch (std::string e) {

24: std::cout << "[exception] " << e << std::endl;

25: return -1;

26: }

100

Section C.3 TCP Implementation

Description:

! lines 2-21 of the main loop are embedded into a try ... catch construct which catches
all exceptions that might be thrown during program execution.

! line 2 creates a new LanguageModelServer instance and makes it available using the
lmserver pointer.

! lines 4-19 form the actual server main loop which continues to wait for requests while
the server is usable. This is queried using the is usable() method.

! lines 5-18 subdivide the server main loop into handler sections for each of the possible
server modes. The current server mode is returned by get mode().

! lines 6-8 represent the IPC handler.

! lines 10-12 represent the TCP handler.

! lines 14-17 represent the MIXED handler which actually is a combination of both the TCP
and the IPC handlers.

C.3 TCP Implementation

If the language model server is configured to handle incoming TCP requests, a normal TCP
server is started. For this, a server socket is created and bound to the given server port.
The language model server will listen on this port and wait for any incoming TCP clients
requests.

Messages are exchanged using a small char buffer which may contain up to TCP BUFFER SIZE

bytes. The small size of this buffer also explains the main disadvantage of the TCP server mode:
it will take more time than the IPC mode to transmit large results back to the client.

C.4 IPC Implementation

The language model server implements IPC communication using two designated blocks of
shared memory and a semaphore to manage read/write access to these. In order to identify
memory two unique keys are generated when the IPC mode is initialized.

Clients will wait until the semaphore is free to be used and lock it once they have been granted
access. The server will then process the query and write back the result to memory. The
client finally releases the semaphore which enables other clients to send requests.

101

Appendix C Language Model Server Code

102

Appendix D

Tables

The tables on the following pages provide detailed information on the different indexing
methods which were defined and evaluated in chapter 3. Each table lists the index size
and the corresponding compression rate. Afterwards the number of large subsets, the
subset count, the resulting large subset rate, and last but not least the final compression
gain are given. All these values are evaluated for several subset thresholds.

The various indexing methods have been evaluated on a 5-gram English language model con-
taining 10,037,283 tokens, the column which shows the best combination of subset threshold
and compression gain is printed in bold face.

103

Appendix D Tables
Table

D
.1:

Increasing
Indexing

w
ith

Γ
=

[1,0,0,0,0]

subset
threshold

50
100

250
500

1,000
2,500

5,000
10,000

index
size

71
com

pression
rate

100.00%
large

subsets
61

59
55

53
50

47
42

34
subset

count
10,037,181

10,037,027
10,036,345

10,035,603
10,033,195

10,028,742
10,009,452

9,952,413
large

subset
rate

100.00%
100.00%

99.99%
99.98%

99.96%
99.91%

99.72%
99.15%

com
pression

gain
0.00%

0.00%
0.01%

0.02%
0.04%

0.08%
0.28%

0.84%

Table
D

.2:
Increasing

Indexing
w

ith
Γ

=
[1,2,0,0,0]

subset
threshold

50
100

250
500

1,000
2,500

5,000
10,000

index
size

22,789
com

pression
rate

99.77%
large

subsets
5,848

4,789
3,549

2,650
1,800

879
421

194
subset

count
9,907,819

9,832,027
9,629,883

9,306,774
8,695,968

7,227,342
5,632,371

4,023,928
large

subset
rate

98.71%
97.96%

95.94%
92.72%

86.64%
72.00%

56.11%
40.09%

com
pression

gain
1.06%

1.82%
3.83%

7.05%
13.14%

27.77%
43.66%

59.68%

Table
D

.3:
Increasing

Indexing
w

ith
Γ

=
[1,2,3,0,0]

subset
threshold

50
100

250
500

1,000
2,500

5,000
10,000

index
size

603,637
com

pression
rate

93.99%
large

subsets
28,618

14,452
5,670

2,661
1,073

219
54

0
subset

count
6,650,123

5,658,116
4,312,623

3,263,117
2,157,998

901,438
353,170

0
large

subset
rate

66.25%
56.37%

42.97%
32.51%

21.50%
8.98%

3.52%
0.00%

com
pression

gain
27.73%

37.62%
51.02%

61.48%
72.49%

85.01%
90.47%

93.99

104

Ta
bl

e
D

.4
:

In
cr

ea
si

ng
In

de
xi

ng
w

it
h

Γ
=

[1
,2

,3
,4

,0
]

su
bs

et
th

re
sh

ol
d

50
10

0
25

0
50

0
1,

00
0

2,
50

0
5,

00
0

10
,0

00
in

de
x

si
ze

2,
27

3,
24

1
co

m
pr

es
si
on

ra
te

77
.3

5%
la

rg
e

su
bs

et
s

14
,4

36
6,

60
1

2,
81

2
1,

47
0

62
6

13
5

38
0

su
bs

et
co

un
t

3,
48

6,
55

2
2,

94
5,

12
0

2,
37

2,
22

5
1,

89
6,

05
9

1,
30

2,
05

1
57

7,
17

7
25

3,
60

6
0

la
rg

e
su

bs
et

ra
te

34
.7

4%
29

.3
4%

23
.6

3%
18

.8
9%

12
.9

7%
5.

75
%

2.
53

%
0.

00
%

co
m

pr
es

si
on

ga
in

42
.6

2%
48

.0
1%

53
.7

2%
58

.4
6%

64
.3

8%
71

.6
0%

74
.8

3%
77

.3
5%

Ta
bl

e
D

.5
:

In
cr

ea
si

ng
In

de
xi

ng
w

it
h

Γ
=

[1
,2

,3
,4

,5
]

su
bs

et
th

re
sh

ol
d

50
10

0
25

0
50

0
1,

00
0

2,
50

0
5,

00
0

10
,0

00
in

de
x

si
ze

4,
10

4,
91

7
co

m
pr

es
si
on

ra
te

59
.1

0%
la

rg
e

su
bs

et
s

10
,9

44
5,

42
4

2,
64

2
1,

44
5

62
2

13
5

38
0

su
bs

et
co

un
t

3,
11

1,
00

1
2,

72
8,

78
0

2,
30

3,
75

0
1,

87
6,

01
5

1,
29

6,
37

2
57

7,
17

7
25

3,
60

6
0

la
rg

e
su

bs
et

ra
te

30
.9

9%
27

.1
9%

22
.9

5%
18

.6
9%

12
.9

2%
5.

75
%

2.
53

%
0.

00
%

co
m

pr
es

si
on

ga
in

28
.1

1%
31

.9
2%

36
.1

5%
40

.4
1%

46
.1

9%
53

.3
5%

56
.5

8%
59

.1
0%

Ta
bl

e
D

.6
:

D
ec

re
as

in
g

In
de

xi
ng

w
it

h
Γ

=
[1

,0
,0

,0
,0

]

su
bs

et
th

re
sh

ol
d

50
10

0
25

0
50

0
1,

00
0

2,
50

0
5,

00
0

10
,0

00
in

de
x

si
ze

71
co

m
pr

es
si
on

ra
te

10
0.

00
%

la
rg

e
su

bs
et

s
61

59
55

53
50

47
42

34
su

bs
et

co
un

t
10

,0
37

,1
81

10
,0

37
,0

27
10

,0
36

,3
45

10
,0

35
,6

03
10

,0
33

,1
95

10
,0

28
,7

42
10

,0
09

,4
52

9,
95

2,
41

3
la

rg
e

su
bs

et
ra

te
10

0.
00

%
10

0.
00

%
99

.9
9%

99
.9

8%
99

.9
6%

99
.9

1%
99

.7
2%

99
.1

5%
co

m
pr

es
si
on

ga
in

0.
00

%
0.

00
%

0.
01

%
0.

02
%

0.
04

%
0.

08
%

0.
28

%
0.

84
%

105

Appendix D Tables
Table

D
.7:

D
ecreasing

Indexing
w

ith
Γ

=
[2,1,0,0,0]

subset
threshold

50
100

250
500

1,000
2,500

5,000
10,000

index
size

25,965
com

pression
rate

99.74%
large

subsets
6,183

4,917
3,515

2,640
1,766

850
407

171
subset

count
9,885,519

9,794,506
9,568,628

9,257,096
8,634,007

7,162,217
5,591,901

3,945,685
large

subset
rate

98.49%
97.58%

95.33%
92.23%

86.02%
71.36%

55.71%
39.31%

com
pression

gain
1.25%

2.16%
4.41%

7.51%
13.72%

28.39%
44.03%

60.43%

Table
D

.8:
D

ecreasing
Indexing

w
ith

Γ
=

[3,2,1,0,0]

subset
threshold

50
100

250
500

1,000
2,500

5,000
10,000

index
size

870,981
com

pression
rate

91.32%
large

subsets
32,182

14,206
4,229

1,554
541

109
21

0
subset

count
5,439,109

4,186,632
2,668,544

1,745,449
1,064,872

423,944
134,718

0
large

subset
rate

54.19%
41.71%

26.59%
17.39%

10.61%
4.22%

1.34%
0.00%

com
pression

gain
37.13%

49.61%
64.74%

73.93%
80.71%

87.10%
89.98%

91.32%

Table
D

.9:
D

ecreasing
Indexing

w
ith

Γ
=

[4,3,2,1,0]

subset
threshold

50
100

250
500

1,000
2,500

5,000
10,000

index
size

4,035,284
com

pression
rate

59.80%
large

subsets
7,786

2,106
336

58
6

0
0

0
subset

count
771,143

384,384
133,373

41,568
6,941

0
0

0
large

subset
rate

7.68%
3.83%

1.33%
0.41%

0.07%
0.00%

0.00%
0.00%

com
pression

gain
52.11%

55.97%
58.47%

59.38%
59.73%

59.80%
59.80%

59.80%

106

Ta
bl

e
D

.1
0:

D
ec

re
as

in
g

In
de

xi
ng

w
it

h
Γ

=
[5

,4
,3

,2
,1

]

su
bs

et
th

re
sh

ol
d

50
10

0
25

0
50

0
1,

00
0

2,
50

0
5,

00
0

10
,0

00
in

de
x

si
ze

7,
46

8,
29

6
co

m
pr

es
si
on

ra
te

25
.5

9%
la

rg
e

su
bs

et
s

61
5

14
0

40
10

0
0

0
0

su
bs

et
co

un
t

63
,9

74
30

,7
17

16
,8

18
6,

45
9

0
0

0
0

la
rg

e
su

bs
et

ra
te

0.
64

%
0.

31
%

0.
17

%
0.

06
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

co
m

pr
es

si
on

ga
in

24
.9

6%
25

.2
9%

25
.4

3%
25

.5
3%

25
.5

9%
25

.5
9%

25
.5

9%
25

.5
9%

Ta
bl

e
D

.1
1:

U
ni

fo
rm

In
de

xi
ng

w
it

h
Γ

=
[1

,1
,1

,1
,1

]

su
bs

et
th

re
sh

ol
d

50
10

0
25

0
50

0
1,

00
0

2,
50

0
5,

00
0

10
,0

00
in

de
x

si
ze

1,
02

0,
47

7
co

m
pr

es
si
on

ra
te

89
.8

3%
la

rg
e

su
bs

et
s

22
,5

19
11

,2
38

4,
33

3
1,

93
5

84
6

34
2

17
2

41
su

bs
et

co
un

t
6,

28
7,

56
3

5,
49

6,
67

9
4,

43
5,

18
7

3,
59

8,
22

0
2,

84
7,

08
0

2,
09

1,
15

0
1,

47
8,

41
3

53
8,

94
8

la
rg

e
su

bs
et

ra
te

62
.6

4%
54

.7
6%

44
.1

9%
35

.8
5%

28
.3

7%
20

.8
3%

14
.7

3%
5.

37
%

co
m

pr
es

si
on

ga
in

27
.1

9%
35

.0
7%

45
.6

5%
53

.9
8%

61
.4

7%
69

.0
0%

75
.1

0%
84

.4
6%

Ta
bl

e
D

.1
2:

U
ni

fo
rm

In
de

xi
ng

w
it

h
Γ

=
[2

,2
,2

,2
,2

]

su
bs

et
th

re
sh

ol
d

50
10

0
25

0
50

0
1,

00
0

2,
50

0
5,

00
0

10
,0

00
in

de
x

si
ze

4,
02

9,
44

4
co

m
pr

es
si
on

ra
te

59
.8

6%
la

rg
e

su
bs

et
s

16
,1

02
7,

15
5

2,
01

9
69

0
16

0
21

0
0

su
bs

et
co

un
t

2,
47

8,
52

9
1,

85
2,

83
6

1,
07

6,
42

5
62

1,
43

2
25

8,
95

0
71

,1
78

0
0

la
rg

e
su

bs
et

ra
te

24
.6

9%
18

.4
6%

10
.7

2%
6.

19
%

2.
58

%
0.

71
%

0.
00

%
0.

00
%

co
m

pr
es

si
on

ga
in

35
.1

6%
41

.4
0%

49
.1

3%
53

.6
6%

57
.2

8%
59

.1
5%

59
.8

6%
59

.8
6%

107

Appendix D Tables
Table

D
.13:

U
niform

Indexing
w

ith
Γ

=
[3,3,3,3,3]

subset
threshold

50
100

250
500

1,000
2,500

5,000
10,000

index
size

6,571,810
com

pression
rate

34.53%
large

subsets
4,234

1,239
190

55
4

0
0

0
subset

count
437,486

234,120
82,886

38,013
4,419

0
0

0
large

subset
rate

4.36%
2.33%

0.83%
0.38%

0.04%
0.00%

0.00%
0.00%

com
pression

gain
30.17%

32.19%
33.70%

34.15%
34.48%

34.53%
34.53%

34.53%

Table
D

.14:
U

niform
Indexing

w
ith

Γ
=

[4,4,4,4,4]

subset
threshold

50
100

250
500

1,000
2,500

5,000
10,000

index
size

7,947,135
com

pression
rate

20.82%
large

subsets
769

227
58

16
0

0
0

0
subset

count
87,132

50,198
26,289

11,104
0

0
0

0
large

subset
rate

0.87%
0.50%

0.26%
0.11%

0.00%
0.00%

0.00%
0.00%

com
pression

gain
19.96%

20.32%
20.56%

20.71%
20.82%

20.82%
20.82%

20.82%

Table
D

.15:
U

niform
Indexing

w
ith

Γ
=

[5,5,5,5,5]

subset
threshold

50
100

250
500

1,000
2,500

5,000
10,000

index
size

8,652,287
com

pression
rate

13.80%
large

subsets
403

48
9

4
0

0
0

0
subset

count
35,942

9,534
3,873

2,330
0

0
0

0
large

subset
rate

0.36%
0.09%

0.04%
0.02%

0.00%
0.00%

0.00%
0.00%

com
pression

gain
13.44%

13.70%
13.76%

13.78%
13.80%

13.80%
13.80%

13.80%

108

Ta
bl

e
D

.1
6:

C
us

to
m

In
de

xi
ng

w
it

h
Γ

=
[1

,1
,1

,1
,0

]

su
bs

et
th

re
sh

ol
d

50
10

0
25

0
50

0
1,

00
0

2,
50

0
5,

00
0

10
,0

00
in

de
x

si
ze

28
9,

85
4

co
m

pr
es

si
on

ra
te

97
.1

1%
la

rg
e

su
bs

et
s

30
,4

87
16

,6
41

6,
40

5
2,

57
6

95
5

34
8

17
2

41
su

bs
et

co
un

t
8,

01
1,

43
9

7,
02

7,
17

9
5,

43
6,

97
6

4,
10

3,
28

0
2,

99
9,

65
5

2,
11

2,
10

3
1,

47
8,

41
3

53
8,

94
8

la
rg

e
su

bs
et

ra
te

79
.8

2%
70

.0
1%

54
.1

7%
40

.8
8%

29
.8

9%
21

.0
4%

14
.7

3%
5.

37
%

co
m

pr
es

si
on

ga
in

17
.3

0%
27

.1
0%

42
.9

4%
56

.2
3%

67
.2

3%
76

.0
7%

82
.3

8%
91

.7
4%

Ta
bl

e
D

.1
7:

C
us

to
m

In
de

xi
ng

w
it

h
Γ

=
[1

,1
,1

,0
,0

]

su
bs

et
th

re
sh

ol
d

50
10

0
25

0
50

0
1,

00
0

2,
50

0
5,

00
0

10
,0

00
in

de
x

si
ze

42
,2

97
co

m
pr

es
si
on

ra
te

99
.5

8%
la

rg
e

su
bs

et
s

12
,8

82
9,

58
9

6,
07

3
3,

96
7

2,
26

4
89

2
36

2
87

su
bs

et
co

un
t

9,
73

8,
01

3
9,

49
9,

66
2

8,
93

2,
16

5
8,

17
6,

41
4

6,
96

4,
12

3
4,

84
3,

54
4

2,
98

2,
97

7
1,

09
9,

10
8

la
rg

e
su

bs
et

ra
te

97
.0

2%
94

.6
4%

88
.9

9%
81

.4
6%

69
.3

8%
48

.2
6%

29
.7

2%
10

.9
5%

co
m

pr
es

si
on

ga
in

2.
56

%
4.

93
%

10
.5

9%
18

.1
2%

30
.2

0%
51

.3
2%

69
.8

6%
88

.6
3%

Ta
bl

e
D

.1
8:

C
us

to
m

In
de

xi
ng

w
it

h
Γ

=
[1

,1
,0

,0
,0

]

su
bs

et
th

re
sh

ol
d

50
10

0
25

0
50

0
1,

00
0

2,
50

0
5,

00
0

10
,0

00
in

de
x

si
ze

3,
18

8
co

m
pr

es
si
on

ra
te

99
.9

7%
la

rg
e

su
bs

et
s

1,
72

5
1,

48
3

1,
14

9
92

8
72

5
51

6
38

2
26

0
su

bs
et

co
un

t
10

,0
20

,8
54

10
,0

03
,0

90
9,

94
9,

43
6

9,
87

1,
77

6
9,

72
8,

16
0

9,
40

2,
17

6
8,

91
8,

80
5

8,
02

5,
55

7
la

rg
e

su
bs

et
ra

te
99

.8
4%

99
.6

6%
99

.1
2%

98
.3

5%
96

.9
2%

93
.6

7%
88

.8
6%

79
.9

6%
co

m
pr

es
si
on

ga
in

0.
13

%
0.

31
%

0.
84

%
1.

62
%

3.
05

%
6.

30
%

11
.1

1%
20

.0
1%

109

Appendix D Tables
Table

D
.19:

C
ustom

Indexing
w

ith
Γ

=
[2,2,2,2,0]

subset
threshold

50
100

250
500

1,000
2,500

5,000
10,000

index
size

2,313,163
com

pression
rate

76.95%
large

subsets
20,014

8,369
2,228

726
165

21
0

0
subset

count
2,894,843

2,085,157
1,161,895

650,138
267,007

71,178
0

0
large

subset
rate

28.84%
20.77%

11.58%
6.48%

2.66%
0.71%

0.00%
0.00%

com
pression

gain
48.11%

56.18%
65.38%

70.48%
74.29%

76.25%
76.95%

76.95%

Table
D

.20:
C

ustom
Indexing

w
ith

Γ
=

[2,2,2,0,0]

subset
threshold

50
100

250
500

1,000
2,500

5,000
10,000

index
size

759,912
com

pression
rate

92.43%
large

subsets
34,307

16,073
4,924

1,765
514

84
10

0
subset

count
5,845,849

4,563,817
2,860,281

1,779,039
926,112

305,601
59,693

0
large

subset
rate

58.24%
45.47%

28.50%
17.72%

9.23%
3.04%

0.59%
0.00%

com
pression

gain
34.19%

46.96%
63.93%

74.70%
83.20%

89.38%
91.83%

92.43%

Table
D

.21:
C

ustom
Indexing

w
ith

Γ
=

[2,2,0,0,0]

subset
threshold

50
100

250
500

1,000
2,500

5,000
10,000

index
size

92,705
com

pression
rate

99.08%
large

subsets
17,413

11,981
6,310

3,548
1,875

662
239

84
subset

count
9,509,778

9,117,531
8,213,923

7,245,100
6,081,564

4,210,389
2,752,989

1,692,081
large

subset
rate

94.74%
90.84%

81.83%
72.18%

60.59%
41.95%

27.43%
16.86%

com
pression

gain
4.33%

8.24%
17.24%

26.89%
38.49%

57.13%
71.65%

82.22%

110

Ta
bl

e
D

.2
2:

C
us

to
m

In
de

xi
ng

w
it

h
Γ

=
[3

,3
,3

,0
,0

]

su
bs

et
th

re
sh

ol
d

50
10

0
25

0
50

0
1,

00
0

2,
50

0
5,

00
0

10
,0

00
in

de
x

si
ze

2,
26

9,
88

2
co

m
pr

es
si
on

ra
te

77
.3

9%
la

rg
e

su
bs

et
s

18
,0

19
6,

76
0

1,
65

5
56

1
16

2
12

0
0

su
bs

et
co

un
t

2,
43

8,
80

0
1,

66
5,

11
1

90
5,

83
7

52
9,

17
0

25
7,

56
0

39
,8

18
0

0
la

rg
e

su
bs

et
ra

te
24

.3
0%

16
.5

9%
9.

02
%

5.
27

%
2.

57
%

0.
40

%
0.

00
%

0.
00

%
co

m
pr

es
si
on

ga
in

53
.0

9%
60

.8
0%

68
.3

6%
72

.1
1%

74
.8

2%
76

.9
9%

77
.3

9%
77

.3
9%

Ta
bl

e
D

.2
3:

C
us

to
m

In
de

xi
ng

w
it

h
Γ

=
[3

,3
,0

,0
,0

]

su
bs

et
th

re
sh

ol
d

50
10

0
25

0
50

0
1,

00
0

2,
50

0
5,

00
0

10
,0

00
in

de
x

si
ze

67
7,

22
4

co
m

pr
es

si
on

ra
te

93
.2

5%
la

rg
e

su
bs

et
s

24
,6

49
12

,8
97

5,
24

2
2,

52
0

1,
11

7
31

8
10

5
37

su
bs

et
co

un
t

7,
07

8,
61

8
6,

25
4,

28
6

5,
07

4,
30

4
4,

12
1,

71
8

3,
14

9,
16

4
1,

93
0,

82
5

1,
21

3,
69

7
74

6,
68

5
la

rg
e

su
bs

et
ra

te
70

.5
2%

62
.3

1%
50

.5
5%

41
.0

6%
31

.3
7%

19
.2

4%
12

.0
9%

7.
44

%
co

m
pr

es
si
on

ga
in

22
.7

3%
30

.9
4%

42
.7

0%
52

.1
9%

61
.8

8%
74

.0
2%

81
.1

6%
85

.8
1%

Ta
bl

e
D

.2
4:

C
us

to
m

In
de

xi
ng

w
it

h
Γ

=
[4

,4
,0

,0
,0

]

su
bs

et
th

re
sh

ol
d

50
10

0
25

0
50

0
1,

00
0

2,
50

0
5,

00
0

10
,0

00
in

de
x

si
ze

1,
32

3,
71

6
co

m
pr

es
si
on

ra
te

86
.8

1%
la

rg
e

su
bs

et
s

21
,9

62
11

,3
63

4,
53

3
2,

10
1

91
4

23
0

83
33

su
bs

et
co

un
t

5,
96

3,
41

5
5,

22
1,

82
3

4,
16

9,
17

4
3,

31
6,

46
9

2,
49

9,
25

1
1,

46
5,

87
5

96
9,

21
0

63
3,

03
9

la
rg

e
su

bs
et

ra
te

59
.4

1%
52

.0
2%

41
.5

4%
33

.0
4%

24
.9

0%
14

.6
0%

9.
66

%
6.

31
%

co
m

pr
es

si
on

ga
in

27
.4

0%
34

.7
9%

45
.2

8%
53

.7
7%

61
.9

1%
72

.2
1%

77
.1

6%
80

.5
1%

111

Appendix D Tables
Table

D
.25:

C
ustom

Indexing
w

ith
Γ

=
[2,1,1,0,0]

subset
threshold

50
100

250
500

1,000
2,500

5,000
10,000

index
size

154,813
com

pression
rate

98.46%
large

subsets
26,687

16,870
8,190

4,189
1,732

398
105

6
subset

count
8,905,373

8,200,391
6,827,517

5,423,549
3,710,212

1,723,013
710,573

70,708
large

subset
rate

88.72%
81.70%

68.02%
54.03%

36.96%
17.17%

7.08%
0.70%

com
pression

gain
9.73%

16.76%
30.44%

44.42%
61.49%

81.29%
91.38%

97.75%

Table
D

.26:
C

ustom
Indexing

w
ith

Γ
=

[3,2,2,0,0]

subset
threshold

50
100

250
500

1,000
2,500

5,000
10,000

index
size

1,281,536
com

pression
rate

87.23%
large

subsets
28,328

11,491
3,107

1,019
312

40
6

0
subset

count
4,151,390

2,987,910
1,732,336

1,018,458
543,812

148,780
36,406

0
large

subset
rate

41.36%
29.77%

17.26%
10.15%

5.42%
1.48%

0.36%
0.00%

com
pression

gain
45.87%

57.46%
69.97%

77.09%
81.81%

85.75%
86.87%

87.23%

Table
D

.27:
C

ustom
Indexing

w
ith

Γ
=

[3,1,1,0,0]

subset
threshold

50
100

250
500

1,000
2,500

5,000
10,000

index
size

409,178
com

pression
rate

95.92%
large

subsets
33,546

17,970
6,669

2,771
999

234
49

4
subset

count
7,488,193

6,385,161
4,637,587

3,285,455
2,075,593

942,805
326,034

47,653
large

subset
rate

74.60%
63.61%

46.20%
32.73%

20.68%
9.39%

3.25%
0.47%

com
pression

gain
21.32%

32.31%
49.72%

63.19%
75.24%

86.53%
92.68%

95.45%

112

Ta
bl

e
D

.2
8:

C
us

to
m

In
de

xi
ng

w
it

h
Γ

=
[3

,1
,0

,0
,0

]

su
bs

et
th

re
sh

ol
d

50
10

0
25

0
50

0
1,

00
0

2,
50

0
5,

00
0

10
,0

00
in

de
x

si
ze

11
1,

27
3

co
m

pr
es

si
on

ra
te

98
.8

9%
la

rg
e

su
bs

et
s

15
,1

66
10

,4
25

5,
66

9
3,

22
9

1,
66

2
58

9
27

9
10

8
su

bs
et

co
un

t
9,

43
5,

62
0

9,
09

6,
51

1
8,

33
9,

28
4

7,
47

7,
09

0
6,

36
9,

43
1

4,
74

0,
47

4
3,

66
3,

95
1

2,
47

7,
58

2
la

rg
e

su
bs

et
ra

te
94

.0
1%

90
.6

3%
83

.0
8%

74
.4

9%
63

.4
6%

47
.2

3%
36

.5
0%

24
.6

8%
co

m
pr

es
si
on

ga
in

4.
89

%
8.

26
%

15
.8

1%
24

.4
0%

35
.4

3%
51

.6
6%

62
.3

9%
74

.2
1%

Ta
bl

e
D

.2
9:

C
us

to
m

In
de

xi
ng

w
it

h
Γ

=
[1

,2
,2

,0
,0

]

su
bs

et
th

re
sh

ol
d

50
10

0
25

0
50

0
1,

00
0

2,
50

0
5,

00
0

10
,0

00
in

de
x

si
ze

35
0,

25
9

co
m

pr
es

si
on

ra
te

96
.5

1%
la

rg
e

su
bs

et
s

30
,9

99
16

,5
95

6,
76

2
3,

12
4

1,
23

6
26

7
71

0
su

bs
et

co
un

t
7,

65
9,

58
0

6,
64

1,
42

7
5,

12
2,

89
4

3,
85

3,
86

8
2,

54
3,

40
1

1,
12

1,
27

0
46

9,
30

8
0

la
rg

e
su

bs
et

ra
te

76
.3

1%
66

.1
7%

51
.0

4%
38

.4
0%

25
.3

4%
11

.1
7%

4.
68

%
0.

00
%

co
m

pr
es

si
on

ga
in

20
.2

0%
30

.3
4%

45
.4

7%
58

.1
1%

71
.1

7%
85

.3
4%

91
.8

3%
96

.5
1%

Ta
bl

e
D

.3
0:

C
us

to
m

In
de

xi
ng

w
it

h
Γ

=
[2

,3
,0

,0
,0

]

su
bs

et
th

re
sh

ol
d

50
10

0
25

0
50

0
1,

00
0

2,
50

0
5,

00
0

10
,0

00
in

de
x

si
ze

28
3,

78
4

co
m

pr
es

si
on

ra
te

97
.1

7%
la

rg
e

su
bs

et
s

24
,5

82
13

,8
57

5,
93

5
3,

02
9

1,
42

9
46

7
15

2
57

su
bs

et
co

un
t

8,
38

8,
89

9
7,

63
1,

07
6

6,
41

1,
09

3
5,

39
9,

20
5

4,
30

1,
28

6
2,

82
7,

19
4

1,
74

1,
40

0
1,

09
3,

17
0

la
rg

e
su

bs
et

ra
te

83
.5

8%
76

.0
3%

63
.8

7%
53

.7
9%

42
.8

5%
28

.1
7%

17
.3

5%
10

.8
9%

co
m

pr
es

si
on

ga
in

13
.6

0%
21

.1
5%

33
.3

0%
43

.3
8%

54
.3

2%
69

.0
1%

79
.8

2%
86

.2
8%

113

Appendix D Tables

114

Bibliography

Bibliography

[Brants et al., 2007] Brants, T., Popat, A. C., Xu, P., Och, F. J., and Dean, J. (2007). Large
Language Models in Machine Translation. In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 858–867.

[Brown et al., 1990] Brown, P. F., Cocke, J., Della Pietra, S. A., Della Pietra, V. J., Jelinek,
F., Lafferty, J. D., Mercer, R. L., and Roossin, P. S. (1990). A Statistical Approach to
Machine Translation. Computational Linguistics, 16(2):79–85.

[Brown et al., 1995] Brown, P. F., Cocke, J., Della Pietra, S. A., Della Pietra, V. J., Je-
linek, F., Lai, J. C., and Mercer, R. L. (1995). Method and system for natural language
translation. U.S. Patent 5,477,451.

[Brown et al., 1993] Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., and Mercer, R. L.
(1993). The Mathematics of Statistical Machine Translation: Parameter Estimation. Com-
putational Linguistics, 19(2):263–311.

[Callison-Burch and Koehn, 2005] Callison-Burch, C. and Koehn, P. (2005). Introduction
to Statistical Machine Translation. In European Summer School for Language and Logic
(ESSLLI).

[Callison-Burch et al., 2006] Callison-Burch, C., Osborne, M., and Koehn, P. (2006). Re-
evaluating the Role of BLEU in Machine Translation Research. In Proceedings of EACL.

[Doddington, 2002] Doddington, G. (2002). The NIST Automated Measure and Its Rela-
tion to IBM’s BLEU. In Proceedings of LREC-2002 Workshop on Machine Translation
Evaluation: Human Evaluators Meet Automated Metrics, Gran Canaria, Spain.

[Hutchins, 1986] Hutchins, W. J. (1986). Machine Translation: Past, Present, Future. Ellis
Horwood Series in Computers and their Applications. Ellis Horwood, Chichester, UK.

[Hutchins, 2002] Hutchins, W. J. (2002). Machine translation today and tomorrow. In Com-
puterlinguistik: was geht, was kommt?, pages 159–162. Gardez!, Sankt Augustin, Germany.

115

Bibliography

[Jelinek, 1999] Jelinek, F. (1999). Statistical Methods for Speech Recognition. MIT Press,
Cambridge, MA.

[Kirchhoff and Yang, 2005] Kirchhoff, K. and Yang, M. (2005). Improved Language Modeling
for Statistical Machine Translation. In Proceedings of the ACL Workshop on Building and
Using Parallel Texts, pages 125–128. Association for Computational Linguistics.

[Knight, 1999] Knight, K. (1999). A statistical MT tutorial workbook. Prepared for the 1999
JHU Summer Workshop.

[Koehn, 2004a] Koehn, P. (2004a). Pharaoh: A Beam Search Decoder for Phrase-Based
Statistical Machine Translation Models. In Frederking, R. E. and Taylor, K. B., editors,
Machine Translation: From Real Users to Research, pages 115–124. 6th Conference of the
Association for Machine Translation in the Americas, AMTA-2004, Washington DC, USA,
September 28 - October 2, 2004, Springer, Berlin, Germany.

[Koehn, 2004b] Koehn, P. (2004b). The Foundation for Statistical Machine Translation at
MIT. In Proceedings of Machine Translation Evaluation Workshop 2004.

[Koehn, 2005] Koehn, P. (2005). Europarl: A Parallel Corpus for Statistical Machine Trans-
lation. In Proceedings of MT Summit X, Phuket, Thailand. Asia-Pacific Association for
Machine Translation (AAMT).

[Koehn et al., 2007] Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M.,
Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin,
A., and Herbst, E. (2007). Moses: Open Source Toolkit for Statistical Machine Translation.
In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics
Companion Volume Proceedings of the Demo and Poster Sessions, pages 177–180, Prague,
Czech Republic. Association for Computational Linguistics.

[Koehn and Monz, 2005] Koehn, P. and Monz, C. (2005). Shared Task: Statistical Machine
Translation between European Languages. In Proceedings of the ACL Workshop on Build-
ing and Using Parallel Texts.

[Koehn et al., 2003] Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical Phrase-Based
Translation. In NAACL ’03: Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language Technology,
pages 48–54, Edmonton, Canada. Association for Computational Linguistics.

[Och, 1999] Och, F. J. (1999). An Efficient Method for Determining Bilingual Word Classes.
In EACL99, pages 71–76, Bergen, Norway.

116

Bibliography

[Och, 2002] Och, F. J. (2002). Statistical Machine Translation: From Since-Word Models
to Alignment Templates. PhD thesis, RWTH Aachen Department of Computer Science,
Aachen, Germany.

[Och, 2003] Och, F. J. (2003). Minimum Error Rate Training for Statistical Machine Trans-
lation. In Proceedings of ACL, Sapporo, Japan.

[Och et al., 2003] Och, F. J., Gildea, D., Khudanpur, S., Sarkar, A., Yamada, K., Fraser, A.,
Kumar, S., Shen, L., Smith, D., Eng, K., Jain, V., Jin, Z., and Radev, D. (2003). Syntax
for Statistical Machine Translation. Johns Hopkins University 2003 Summer Workshop on
Language Engineering, Center for Language and Speech Processing, Baltimore, MD, USA.

[Och and Ney, 2003] Och, F. J. and Ney, H. (2003). A Systematic Comparison of Various
Statistical Alignment Models. Computational Linguistics, 29(1):19–51.

[Och et al., 1999] Och, F. J., Tillmann, C., and Ney, H. (1999). Improved Alignment Models
for Statistical Machine Translation. In EMNLP ’99, pages 20–28.

[Papineni et al., 2001] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2001). Bleu: A
Method for Automatic Evaluation of Machine Translation. IBM Research Report RC22176
(W0109-022), IBM.

[Papineni et al., 2002] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: A
Method for Automatic Evaluation of Machine Translation. In Proceedings of ACL.

[Stolcke, 2002] Stolcke, A. (2002). SRILM - An Extensible Language Modeling Toolkit. In
Proceedings of the International Conference on Spoken Language Processing, Denver, Col-
orado.

[Vauquois, 1968] Vauquois, B. (1968). A survey of formal grammars and algorithms for recog-
nition and transformation in machine translation. In Proceedings of the IFIP Congress 6,
pages 254–260.

117

